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1 Introduction

Polymer rheology describes the response of macromolecular solutions and melts
to applied deformation and flow. One of the longstanding and challenging goals of
macromolecular engineering research is to identify and elucidate the influence of
macromolecular parameters and interactions on macroscopic rheological behav-
ior and processability [1–7]. Several excellent texts [1–3] and reviews [4–11] dis-
cuss substantial progress in identifying chemistry-independent universalities in
shear rheology response of polymer solutions and melts at large length scales and
time scales. Shear flows, associated with velocity gradients perpendicular to flow
direction, arise within channels and near moving substrates. Most processing
operations that aim at controlling flow rate or production rate rely on the mea-
surement and control of shear viscosity, 𝜂 that quantifies the resistance to shear
flow. Extensional flows, associated with streamwise velocity gradients, arise in
nearly all processing operations that involve expanding or contracting channels,
stagnation points (in T-junctions and cross-slots), pinching necks formed during
dripping and jetting, or curved free surfaces (in coating and printing operations),
as sketched in Figure 1 [9–13, 19, 21–24]. Even though the Newtonian simple
fluids display a rate-independent extensional viscosity, 𝜂E = 3𝜂 that is three times
the shear viscosity, the polymeric complex fluids show relatively large values. For
example, dilute solutions of flexible polymers show extensional viscosity values
103–105 times shear viscosity and display significant strain hardening. This mas-
sive extensional viscosity enhancement arises for high molecular weight flexible
polymers due to a substantial increase in drag correlated with the dynamics of
significantly stretched chains. However, due to extreme sensitivity to the entire
deformation history and difficulty in reaching a steady extensional rate, the char-
acterization of extensional rheology response is considered quite challenging and
remains less well explored than shear rheometry [9–13, 19, 21–25].

Polymer solutions are considered dilute below a critical overlap concentration,
c∗ ≈ Mw∕NAR3

g calculated by equating the volume per coil to the size of an
unperturbed chain at equilibrium [1–3, 10]. Here NA is Avogadro’s number,
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and the radius of gyration or chain size Rg ∝Mw
𝜈 depends on molecular weight,

Mw, and excluded volume (EV) interactions. Solvent quality determines the
values of EV exponent: 𝜈 = 0.5 for 𝜃-solvent (ideal chains) to 𝜈 = 0.588 for good
solvent (expanded coils). By definition, as interchain interactions do not influ-
ence the static and dynamic properties of dilute solutions, the polymer dynamics
are typically described in the highly dilute limit (c≪ c*) using single chain
models by accounting for chain flexibility, entropic resistance to stretching,
solvent-mediated hydrodynamic interactions (HI), and EV interactions [1–4, 7,
10, 26]. Unperturbed polymer coils in solution interpenetrate for concentrations
c> c*. Since macromolecules overlap even in their quiescent state for c/c*> 1,
we refer to these as intrinsically semi-dilute solutions. The macromolecular
dynamics in such semi-dilute polymer solutions [1–4] are relatively challenging
to describe even under shear flow due to the influence of large concentration
fluctuations as well as local concentration-dependent HI and EV interactions.
Additional topological interactions arise above the entanglement concentration,
ce, transforming the macromolecular dynamics and measurable rheological
properties [1–4, 11, 27–39]. In this article, we focus on unentangled polymer
solutions with c< ce (or the scaled concentration, c/c*< ce/c*).

The polymer solutions with c/c*< 1 that are considered dilute under quiescent
conditions or in shear are referred to as effectively semi-dilute in many exten-
sional rheology studies due to the increased degree of overlap and interchain
interactions in stretched chains [26, 40–45]. Shear viscosity of polymer solu-
tions and melts decreases with shear rates, �̇� for shear Weissenberg number,
W is = �̇�𝜆s > 1 or if �̇� exceeds the shear relaxation rate, 1/𝜆s that is correlated to
the longest relaxation time of the chains. Though shear flows only weakly perturb
the chain dimensions (as sketched in Figure 1), strong extensional flows with
Weissenberg number, Wi = �̇�𝜆s > 1 or if extension rate, �̇� exceeds the relaxation
rate leads to coil-stretch transition [10, 15, 16, 26, 45–47]. Furthermore, the
macromolecular strain accumulated under sustained Wi> 1 flows stretch chains
to their full, finite extensibility limit and even cause chain scission [48–51].
The progressive stretching and alignment of chains dramatically change the
intrachain and interchain interactions, impacting both the magnitude and the
concentration-dependent scaling of 𝜂E and 𝜆E, that are often distinct from
the corresponding 𝜂 and 𝜆s values measured in response to viscometric shear
flows [26, 27, 40, 43, 44, 52]. The influence of macromolecular parameters and
interactions on the response to extensional flows remains relatively less well
explored [7–10], partially due to the challenges involved in the description of
the dynamics of stretched and orientated chains [7–12, 26, 32, 45, 53] and the
well-documented challenges of extensional rheometry [9–13, 19, 21–25, 32].

We elucidate the influence of chemical structure (i.e., polymer choice)
and resulting macromolecular parameters on pinching dynamics and exten-
sional rheology response of aqueous polymer solutions. Even though many
water-soluble polymers are used as rheology modifiers, the choice is primarily
based on their shear rheology response. At relatively small concentration
(typically <1 wt.%), polymers provide formulations with an enhanced zero shear
viscosity (and are therefore called thickeners) and a well-defined shear thinning
behavior [54–59]. Enhanced shear viscosity at low shear rates increases the
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stability against flocculation or aggregation (and shelf life) and controls the
spreading rate and area over a target substrate (e.g., skin for cosmetics, wall for
paints, plates for food, or paper for inks). Likewise, adequate shear viscosity
reduction facilitates mixing and pouring at intermediate shear rates (100 <

�̇� < 102 s−1) and liquid transfer to substrates at higher rates (103 < �̇� < 106 s−1)
[60–65]. However, shear rheology response is often found to be poorly correlated
with processability and heuristic properties like stickiness, tackiness, stringiness,
cohesiveness, jettability, printability, gloppiness, and spinnability [13, 19, 48,
66–69]. Such properties that depend on extensional rheology response are often
determined qualitatively by examining the pinching behavior of a liquid neck or
filament stretched between finger and thumb, or between a rod and reservoir, or
by visualizing dripping/jetting behavior [13, 19, 38, 65, 67, 69]. However, quan-
titative assessment of such heuristic properties requires the understanding of
interfacial flows and instabilities, as well as material properties underlying pinch-
ing dynamics [12, 13, 19, 23, 24, 36–44, 48, 56, 61, 62, 69–86]. In particular, char-
acterizing and understanding extensional rheology response assumes a critical
significance as stream-wise velocity gradients associated with extensional strain,
𝜀 and extensional strain rates, �̇� spontaneously arise during capillarity-driven
pinching of liquid filaments [13, 19, 48] and next to curved free surfaces in
coating flows [20]. In this article, we introduce capillarity-driven pinching in lieu
of the conventional term “capillary thinning and breakup” (or and pinch-off) to
avoid confusion with (shear) thinning measured using capillary rheometers [60].

This contribution provides an overview of the key viscometric quantities that
describe the shear and extensional rheology response of polymeric complex fluids
and summarizes the methods and challenges for extensional rheology characteri-
zation. We focus on the analysis of capillarity-driven pinching of liquid necks that
facilitates the measurement of the strain and strain-rate dependent extensional
viscosity (also referred to as tensile growth coefficient), 𝜂E = 𝜂+E (t, �̇�). As the mea-
surement of steady values, 𝜂E(�̇�) = 𝜂+E (t, �̇�); t → ∞ are relatively rare, often the
plots show 𝜂E = 𝜂+E (t, �̇�) as a function of extensional strain, 𝜀. In many viscoelas-
tic fluids, pinching dynamics displays elastocapillary (EC) dynamics, yielding an
extensional relaxation time, 𝜆E that can be extracted from the decay constant of
the exponential decrease in radius over time. Additionally, the value of steady,
terminal extensional viscosity, 𝜂∞E can be computed if a terminal viscoelastocap-
illary (TVEC) regime with a linear decrease in radius is manifested due to finite
extensibility of polymer chains [12, 13, 18, 19, 23, 24, 36–44, 48, 56, 61, 62, 66,
69–119]. The extensional relaxation time, 𝜆E represents the time needed for chain
relaxation after an extensional or stretching deformation, whereas 𝜂∞E is corre-
lated with extensibility [19, 26, 43, 45, 120]. Next, we define the macromolecular
parameters required to describe the rheological response of polymer solutions
(and melts), focusing on viscosity and relaxation time measured in response to
shear and extensional flows. To keep the discussion focused but comprehensive,
we limit the discussion to unentangled aqueous polymer solutions, supported by
our experimental studies, made with dripping-onto-substrate (DoS) rheometry
protocols we introduced in 2015 [36, 40–42, 77, 79].

We elucidate the influence of chemical structure (i.e., polymer choice) and
resulting macromolecular parameters like flexibility (or persistence length) and
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molecular-weight dependent extensibility on pinching dynamics and extensional
rheology response of aqueous solutions of 2-hydroxyethyl cellulose (HEC) and
poly(ethylene oxide) or PEO. Polysaccharides including HEC are often employed
as rheology modifiers [54–59, 121] in inks, paints, and coatings [24, 39, 65, 122,
123], foods [38, 74, 82, 86, 121], pharmaceuticals [85], and cosmetics [61, 62, 83,
84, 122, 123], in preference to flexible polymers like PEO. Here we pursue the
long-standing questions around their distinctive influence on flow behavior, pro-
cessing, and performance of solutions and formulations. We describe how this
pursuit involves intertwined quests and insights into fluid mechanics, nonlinear
viscoelasticity, coil-stretch transition (and hysteresis), conformation-dependent
hydrodynamic and EV interactions, and finite extensibility. We infer that the
influence of chemistry can be evaluated a priori, using three macromolecular
parameters: flexibility, extensibility, and segmental dissymmetry, defined and
detailed herein. We anticipate that this critical progress and understanding of
the influence of polymer concentration, solvent choice, and the three macro-
molecular parameters will inspire macromolecular engineering approaches
toward developing materials and formulations with controlled flow behavior,
determining optimal processing parameters, as well as for developing more
realistic constitutive models to describe the response to imposed shear and
extensional flow.

2 Background and Definitions: Polymer Physics,
Pinching Dynamics, and Rheology

2.1 Shear and Extensional Rheology: Basic Concepts and Methods

The response of simple fluids to flow created by applied pressure gradients
or by drag next to a moving surface can be analyzed using Newton’s law of
viscosity [1–3, 14, 15, 29, 60]. The constitutive equation states that the fluid
stress, 𝝉 increases linearly with the deformation rate, �̇� and proportional to a
rate-independent material-dependent property called shear viscosity, 𝜂. Simple
fluids like water, glycerol, and organic solvents (like toluene) can be described
using Newton’s law of viscosity. Their extensional viscosity is three times larger
than shear viscosity, implying only one constant parameter, 𝜂 is needed for
describing shear and extensional rheology of Newtonian fluids. However,
comprehensive modeling and characterization of the rheological response of
polymeric complex fluids require a description of four key phenomena that
display non-Newtonian behavior and related rheological measures [60, 124].
(i) Rate-dependent viscosity, 𝜂(�̇�), for solutions and melts of linear polymers often
exhibit shear thinning, that is, steady shear viscosity decreases with increase in
shear rate, �̇� . The rate-dependent variation in viscosity can be described using
Generalized Newtonian fluid models, including the two-parameter power-law
model described by 𝜏 = K �̇�n or 𝜂(�̇�) = K �̇�n−1 that includes a prefactor called
consistency, K and a power-law index, n< 1 [60, 125]. (ii) Stress relaxation,
captured by time-dependent modulus G(t; 𝜆) describes the time-dependent
variation in stress after step strain, and often the longtime response involves an
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exponential decay, governed by the longest relaxation time, 𝜆 [1, 2, 29, 124, 126].
(iii) Normal stress differences N1and N2 that drive rod climbing phenomena
or the “Weissenberg effect” and contribute to elastic instabilities, especially in
strong flows that involve curved streamlines [127–134]. (iv) Strain hardening in
response to extensional flow, responsible for tubeless siphon, enhanced pressure
drops in porous media flows, stringiness and spinnability of polymer solutions
and melts, and the delayed pinch-off of viscoelastic fluid filaments [9–13, 19,
21–25, 32, 36, 37, 39–44, 76–81, 112, 118, 119, 135–138].

Deformations and recovery of elastic polymeric fluids in the limit of small
deformations, known as a linear viscoelastic response, can be captured by using
the simplest models for macromolecular dynamics that consider polymer chains
as elastic dumbbells: two Stokes beads (capture drag) connected by a Hookean
spring (entropic elasticity) [29]. The elastic dumbbell model is the molecular
basis for the upper-convected Maxwell model and the Oldroyd-B model [29].
Bead-spring models including Rouse and Zimm models, discussed in the next
section, include a large number of beads (number increases in proportion to
molecular weight) and thus incorporate a spectrum of relaxation times [1, 2, 29,
60, 124, 126, 139–141]. However, the response to large deformations or non-
linear viscoelastic response requires additional considerations: non-Hookean
elastic response, finite extensibility, and conformation-dependent drag [7, 26,
29, 45, 142, 143]. The advent of advanced torsional rheometers, in particular,
has facilitated the characterization of the steady and unsteady response to shear
flows [60]. The utility and limitations of different geometries and test profiles
available for torsional rheometry characterization and other measurement
techniques available for measuring shear rheology response are summarized by
Macosko, among others [60, 125, 126].

However, characterizing extensional rheology response is rather challenging
as measurements require bespoke instrumentation, display high sensitivity to
deformation history, and are susceptible to elastic or inertial flow instabilities
that can arise in microfluidic and stagnation flow devices [12, 13, 19, 23–25,
36, 144]. Most techniques, especially fiber spinning techniques and FISER
(filament stretching rheometry), are suitable for polymer solutions with rela-
tively high viscosity, and typically the range of accessible strain or strain rates
is somewhat limited, as shown in Figure 2 [11, 23–25, 60, 118, 135, 136, 145].
Bulk, macroscopic measurements carried out by measuring stress required to
stretch liquid bridges at the constant extensional rate in FISER are reviewed in
McKinley and Sridhar [118], and the focus of more recent papers on entangled
polymer solutions and melts [11, 21, 32, 53, 146–148], whereas McKinley (2005)
presents a comprehensive summary of extensional rheology characterization
based on capillarity-driven pinching flows including CaBER (capillary breakup
rheometry). Dontula et al. showed that strong inertial and shear within the
nozzle effects render the opposed jets technique unsuitable for quantitative or
accurate measurements of 𝜂E [149, 150]. It is well-established that the extensional
rheology response exhibits a high sensitivity to deformation history, revealing
distinct behavior based on the experimental protocol used [12, 23, 96, 151, 152].
Therefore, the analysis of pinching dynamics provides access to extensional
rheology response at strain rates most relevant for liquid transfer applications.
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Figure 2 Most standard techniques are used for characterizing the extensional rheology
response of polymeric solutions. The range of zero shear viscosity (on the y-axis), and the
extension rates (on the x-axis) constrained by the design limitations determine the suitability
of each technique. The inset shows the typical scaled extensional viscosity response
(or Trouton ratio) as a function of dimensionless extension rate (or Weissenberg number) for
dilute polymer solutions [103] and semi-dilute, entangled polymer solutions [21].

2.2 Capillarity-driven Pinching Dynamics

Table 1 summarizes and lists the typical neck shapes and radius evolution
profiles associated with capillarity-driven pinching flows of Newtonian and
non-Newtonian fluids. The local balance of capillarity, inertial, and viscous
stresses determines the pinching dynamics for Newtonian fluids [70, 71, 73].
Additional contributions from rate-dependent viscosity and elastic stresses
impact the pinching dynamics for many complex fluids [19, 36, 73, 77]. Low
viscosity Newtonian solvents like water exhibit a single conical neck, and
radius evolution displays inertiocapillary (IC) response [71, 78, 153, 154,
157]. In contrast, higher viscosity Newtonian fluids like glycerol exhibit a
slender, cylindrical neck that exhibits viscocapillary (VC) pinching dynamics if
Ohnesorge number, Oh= tVC/tR > 1 [78, 155–157]. Here Oh = 𝜂∕

√
𝜌𝜎R0 repre-

sents a dimensionless viscosity for a fluid with viscosity, 𝜂 density, 𝜌 and surface
tension, 𝜎. Non-Newtonian formulations that show strong shear thinning
response exhibit power law as pinching behavior and the neck pinches by
forming two cones for power-law index, n< 0.66, whereas for n> 0.66, pinching
of slender, cylindrical necks is observed [19, 77, 158–160, 162–164].

The addition of long, flexible polymers leads to extra viscoelastic stresses, that
slow down pinching, and delay the pinch-off event, typically due to EC response,
manifested with an exponential decay in radius. A detailed discussion of pinch-
ing dynamics, as anticipated by different constituent models for non-Newtonian
fluids, can be found in many papers and reviews, especially those contributed
by Entov [90, 91, 120, 161], Yarin [48, 88, 89, 161], Renardy [158, 162–164],
McKinley, Rothstein, and Clasen [19, 24, 25, 43, 44, 52, 75, 80, 81, 95–98,
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103, 112, 114, 156, 166–174], and the coauthors [24, 36–42, 61, 62, 75–79,
95, 114, 119, 137, 138]. The modified expression listed in Table 1 (introduced
by Dinic and Sharma [79]), allows accounting for the onset of EC at tc, and
the computation of the extensional relaxation time, 𝜆E as well as an apparent
extensional modulus, GE [40–42, 77, 79] as distinct from the corresponding
values obtained from shear rheology characterization. Finite extensibility effects
[79, 88, 89, 120, 165] can sometimes result in a terminal visco-elastocapillary
(TVEC) response with R(t)∝ (tf − t)/tTVEC, yielding the measurements of the
steady, terminal extensional viscosity 𝜂∞E and the filament lifespan, tf (or
the overall pinch-off time). As tTVEC/tVC =Tr∞/3, we define Tr∞ = 𝜂∞E ∕𝜂0 to be
the terminal Trouton ratio that depends on the ratio of the mean squared size of
stretched and unperturbed chains.

The dilute solutions of HEC and PEO with nearly matched measured shear
viscosity and (estimated) relaxation time are expected to show matched response
in the Newtonian and the EC regime based on the Entov–Hinch model (and
its variants) [19, 44, 88, 89, 166, 175], with a contrast in the pinching dynamics
anticipated only in the TVEC regime due to distinct values of 𝜂∞E . The published
literature lacks such close, quantitative comparisons, and we recently showed
that these expectations are not realized in practice for reasons discussed and
revisited herein [42]. The lack of such data and comparisons was partially due
to the challenges involved in the characterization of capillarity-driven pinching
of a filament created by applying step-strain to a fluid confined between two
plates [19, 25, 52, 87–91, 103, 169, 176], likewise in the commercially available
technique called CaBER. Four significant issues arise: (i) Pinch-off occurs before
plate separation even with rapid step-strain for low viscosity (𝜂 < 50 mPa • s),
or low elasticity (𝜆s, 𝜆E < 1 ms) fluids [25]. (ii) The IC/VC-EC transition is not
visualized (or gets masked) for unentangled polymer solutions [44, 79]. The
EC regime for the semi-dilute solutions is neither easy to define nor fit [177].
(iii) The TVEC (or finite extensibility) regime, as well as the EC-TVEC transition,
is typically not captured [79]. (iv) The extensional relaxation time, 𝜆E = 𝜆EC >𝜆s
obtained from the EC fit is greater in magnitude and exhibits a stronger
concentration-dependence than the longest shear relaxation time, 𝜆s for unen-
tangled flexible polymer solutions like PEO [44, 176]. The slow retraction method
(SRM) avoids the fast stretch of the conventional CaBER technique [169], but
then the self-thinning process might not drive or govern IC/VC-EC transition.
We have established that the DoS rheometry protocols help overcome the first
three characterization challenges [37, 38, 40, 41, 77, 79], and made progress
toward understanding the concentration-dependent scaling of the extensional
rheology response by a careful assessment of stretched polymer physics.

Here, we characterize the pinching dynamics and extensional rheology
response using DoS rheometry protocols [36–38, 40–42, 77, 79]. Several studies,
including our own, describe the characterization of the extensional rheology and
pinching dynamics using (DoS) rheometry for solutions of neutral and charged
polymers [36–41, 77, 79, 119, 137, 138, 178–184], inks and particle suspensions
[77, 172, 174], wormlike micellar solutions [77, 185–188], hydrocolloids and
food materials (cellulose gum solutions, ketchup, mayo) [38, 77], and cosmetics
(nail lacquer formulations, hand-cream, shampoo, and conditioners) [61, 62, 77].
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The DoS rheometry involves visualization and analysis of pinching necks created
by dripping a finite volume of a liquid from a fixed nozzle onto a partially
wetting substrate. Briefly, the fluid is pumped at a low and fixed flowrate,
Q= 0.02 ml min−1, through a nozzle with an outer and inner diameter of
D0 = 2R0 = 1.27 mm and Di = 0.838 mm, respectively. A finite volume of the
liquid is released onto a substrate placed at distance H , such that the aspect ratio
of H/D0 ≈ 3. The DoS videos are further analyzed with specially written MAT-
LAB codes for determining radius evolution over time. The specific challenges
that arise for HEC solutions due to extremely short-lived EC and TVEC regimes
in unentangled and entangled solutions are detailed elsewhere [189]. Here, we
focus on revisiting the HEC versus PEO comparison.

2.3 Polymer Dynamics in Unentangled Solutions: Rouse, Zimm,
and Rouse–Zimm Chains

For dilute solutions, the macromolecular dynamics in quiescent conditions
(dynamic light scattering) and shear flow for dilute solutions are captured quite
well by Zimm model [1, 2, 10, 141], a single chain model that accounts for both
EV and HI. In contrast, the original Rouse model [2, 10, 140] that neglects both
effects (and is inconsistent with the measured response of dilute solutions) is
found to describe the dynamics of unentangled melts quite well. The Rouse and
Zimm models in their original form are bead-spring models and allow an esti-
mate of relaxation time using the formula, 𝜆s =R2𝜁/kBT (ignoring the prefactors
obtained by the exact calculations). Here, R represents the root mean squared
ensemble-averaged coil size that equals the unstretched length, Rus = ⟨R0⟩1∕2 =
N𝜈

KbK. The relaxation time is set by diffusion coefficient (D= kBT/𝜁 or the ratio
of thermal energy to friction coefficient), and NK and bK are the respective
number of Kuhn segments and Kuhn length. In the Rouse model, 𝜁 ∝M or
increases linearly with molecular weight, whereas in the Zimm model, as
𝜁 ∝R∝M𝜈 , the drag coeffient has lower magnitude (due to HI). Both Rouse
time, 𝜆R ≈ 𝜆oN2

K and Zimm time, 𝜆Z ≈ 𝜆oN3𝜈
K depend on the same monomer

relaxation time, 𝜆o ≈ 𝜂sb3
K∕kBT , where 𝜂s refers to the solvent viscosity. The

progressive screening of both EV and HI in intrinsically semi-dilute solutions
can be captured to a good approximation using the composite Rouse–Zimm
model or the blob models [1, 3].

The blob theory, as originally devised for intrinsically semi-dilute solutions,
assumes that on length scales larger than the correlation length (𝜉h ≈ 𝜉, hydro-
dynamic comparable to EV screening length), the dynamics are many-chain-like
Rouse-like dynamics are followed with both EV and HI screened. The time
scale associated with the blob relaxation is determined by utilizing the Zimm
model, 𝜆𝜉 ≈ 𝜂s𝜉

3/kBT . The number of monomers in the correlation blob is

g ≈ 𝜙

(
𝜉

b

)3
≈ 𝜙−1∕(3v−1) and the volume fraction 𝜙 is related to the concentration

c’ in mass/volume by the expression 𝜙= c ’ NKbK
3NA/Mw. The Rouse–Zimm

model then captures the relaxation time for a chain of blobs as described by the
following equation:

𝜆RZ ≈ 𝜆𝜉(N2
K∕g2) ≈ 𝜆oN2

K𝜙
m (1)
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The exponent that describes concentration dependence is m= (2− 3𝜐)/
(3𝜐− 1)≅ 0.31 for good solvents (EV interactions included) and m= (2− 3𝜐)/
(3𝜐− 1)≅ 1 if EV interactions are screened or absent.

In the 1970s, de Gennes and Pincus postulated that the single polymer chains
under tension could be described by considering an equivalent chain made up
of tension blobs [3, 190, 191] (or Pincus blobs), such that structural anisotropy
and the influence of the applied tension on intrachain interactions play a role
only above 𝜉t. At the molecular level, the question that remains unanswered
is how such a chain of Pincus blobs relaxes or behaves when surrounded by a
sea of similarly stretched chains in a good solvent. Recently, Prabhakar et al.
[26, 45] proposed a constitutive model for unentangled polymer solutions in
a theta solvent by combining the tension blob and conformation-dependent
drag frameworks and inferred that stretching strengthens intermolecular
interactions in the dilute regime but weakens those in the semi-dilute regime.
However, Prabhakar et al. [26] acknowledged the need for similar models for
stretched chains in a good solvent, and the utter lack of extensional rheology
data for the intrinsically semi-dilute, unentangled solutions. This article revisits
the extensional relaxation time data we acquired for intrinsically semi-dilute,
unentangled solutions in a good solvent (1< c/c*< ce/c*) and summarizes our
findings on the influence of solvent and polymer properties.

The polymer contribution to shear viscosity for dilute and semi-dilute
unentangled solutions can be estimated using 𝜂p ≈G𝜆, with G ≈ 𝜙kBT∕NKb3

K
and in semi-dilute unentangled solutions, this yields, 𝜂p ∝ 𝜂s𝜙

m+ 1, with stronger
dependence than the linear law, 𝜂p ∝𝜙1 obtained for the dilute regime. It is more
common to describe the concentration-dependent increase in specific viscosity,
𝜂sp = 𝜂p/𝜂s in terms of the degree of overlap or as 𝜂sp = (c/c*)m+ 1 = (c/c*)1/(3𝜐− 1).
Experiments show that above entanglement concentration, ce, the behavior
changes to much stronger concentration dependence 𝜂sp = (c/c*)3/(3𝜐− 1) due
to the role played by topological interactions (or entanglements). The plot
of zero shear viscosity (determined from rate-independent viscosity at low
shear rates) against molecular weight for polymer melts, also known as the
Berry-Fox plot, a transition from a linear scaling of 𝜂0 ∝M to stronger than cubic
dependence, 𝜂0 ∝M3.4 occurs beyond the entanglement molecular weight, Me.
The textbook by Dealy et al. surveys the current state-of-the-art in polymer melt
rheology [139]. Fairly extensive literature focuses on the shear and extensional
rheology response of entangled melts, as the application and processing of
commodity plastics require both understanding and control over their shear and
extensional rheology [11, 21, 26–29, 31–36, 45, 53, 146–148, 192, 193]. Several
studies [112, 114, 194–196] detail the role of entanglements in promoting
spinnability, a heuristic property, often correlated with the successful production
of continuous filaments using either conventional (dry, wet, dry-jet, and gel
spinning) [197] or emerging methods (electrospinning, centrifugal force spin-
ning, and blow spinning) [113, 195, 198–202]. Correspondingly, unentangled
solutions are considered suitable for applications where drop formation is
desired, and stringiness, as well as long-lived fluid threads, pose processing
challenges.
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2.4 Macromolecular Flexibility, Extensibility, and Segmental
Dissymmetry

The contrast in local flexibility or stiffness scales with the magnitude of Kuhn
length, bK, or persistence length, lp = bK/2 as lp is the characteristic length
scale correlated with an exponential decay in angular correlations along a chain
backbone [1–3, 5, 6]. Polymers can be classified as globally flexible, semi-flexible,
or rigid-rods [1, 2, 8, 203, 204] by comparing the Kuhn length, bK to the
contour length, Rmax =NKbK or based on their ratio, NK =Rmax/bK. Biomacro-
molecules like DNA, actin, collagen, polysaccharides, and synthetic polymers
like poly(benzyl glutamate) and Kevlar are often considered semi-flexible [1, 2,
8, 203–206] due to the relatively large values of lp. Semi-flexibility influences
both thermodynamic and hydrodynamic properties [1–3, 8, 203–209]. Here, we
consider polysaccharides to be semi-flexible chains recognizing that their static
and dynamic behavior is distinct from the behavior exhibited by semi-flexible
filaments like actin, collagen, carbon nanotubes, and fd-virus; for the latter,
contour length is comparable to persistence length or NK ∼O(10) (or lower)
[173, 206, 210]. Extensional viscosity of FENE-P chains (finitely extensible
nonlinear elastic, with Peterlin’s preaveraging approximation) in ultra-dilute
solutions can be written as 𝜂∞E → 3𝜂s + 2𝜂p L2

E exhibiting a dependence on both
polymer contribution to shear viscosity, 𝜂p as well as the finite extensibility
parameter, L2

E = (Rmax∕Rus)2 = N2(1−𝜈)
K , defined as the ratio of the contour

length of a chain, Rmax =NKbK to the unstretched length, Rus = ⟨R0⟩1∕2 = N𝜈
KbK.

Thus in addition to NK, the finite extensibility parameter depends on the
polymer–solvent interactions (including the EV interactions) [19] that determine
the value of the solvent quality exponent, 𝜈.

In the 1970s, deGennes [3, 15], Tanner [211], and Hinch [212] discussed
that chains undergo coil-stretch transition beyond a critical extension rate,
�̇�C→S and due to coil-stretch hysteresis, the prestretched chains relax back by
undergoing stretch-coil transition, �̇�S→C < �̇�C→S at a lower rate implying that the
stretched state of polymers can be maintained if deformation rate stays above
�̇�S→C. The physical reality of coil-stretch hysteresis remained under scrutiny
[211–214] until DNA-based microfluidics experiments by Schroeder et al.
[16, 215], showed both transition and hysteresis. Furthermore, simulations by
Schroeder et al. [16, 215], and by Hsieh and Larson [216–218] demonstrated
that coil-stretch hysteresis manifests itself if 𝜍s/𝜍c > 4.5 or the ratio of drag
coefficients of stretched to unperturbed coils exceeds a critical value of 4.5.
Schroeder et al. [8, 9, 16, 215] reported direct observation of coil-stretch
transition and hysteresis of fluorescently labeled longer bacterial genomic
DNA (Rmax = 1300 μm) with a drag ratio of 5 and absence of hysteresis for
𝜆-DNA (Rmax = 20 μm) with a drag ratio of 1.6. The coil-stretch transition
takes place beyond the critical extensional rate Wi = 𝜆s�̇�c > 1∕2 defined by
a concentration-dependent shear relaxation time. The drag coefficient for
spherical coil, 𝜍c based on Zimm model, and 𝜍s for stretched chains based on
the rigid rod are given as:

𝜍c = (3∕8)(6π3)1∕2𝜂sRc = 5.11𝜂sRc (2a)
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𝜍s =
6.28𝜂sRmax

ln(Rmax∕d)
=

6.28𝜂sNKbK

ln(NKbK∕d)
(2b)

The ratio of drag coefficients of the stretched to the coiled chain is given by the
following expression:

𝜍s∕𝜍c ≈ Rmax∕Rc ln(NKbK∕d) ≈ LE∕ ln(NKbK∕d) (3)

The calculation of coil-stretch transition and hysteresis criteria using the
ratio of drag coefficients requires the value of an additional length-scale, d that
represents the hydrodynamic diameter of a Kuhn segment. Even though the
Kuhn length, bK can be obtained from experiments or theory, the hydrodynamic
diameter, d is not usually specified or measured for most polymers. According
to Larson [124], the actual diameter of the Kuhn segment can be estimated using
d2

Kl = 4M0∕0.82jπNA𝜌 by matching the volume occupied by NK Kuhn segments
of a chain with the volume per coil in a melt. The formula uses the molecular
weight of a chemical monomer M0 and bond length, l and assumes j is equal
to the number of monomeric carbon atoms in the polymer backbone (j= 2 for
polymers like PS or PE), and the factor 0.82 accounts for the tetrahedral bond
angle. However, the relationship between d and dK is not obvious.

We posit that a practically more suitable and rheologically relevant alternative
for computing d is the use of packing length, p = (π∕4)d2

K∕bK ≈ d2∕bK. Fetters
et al. [30, 192, 193, 219] have shown that for flexible polymers like PEO, the
plateau modulus, Ge, the entanglement molecular weight, Me, or the tube length,
a can all be defined in terms of a packing length, p. Witten et al. [220] identified
p as the length scale that provides a measure of polymer elasticity. Dividing
the Kuhn segment size (a measure of local flexibility) with the packing length,
correlated with the entanglement modulus (the macroscopic measure of
elasticity), we obtain a new dimensionless measure we define as segmental
dissymmetry:

Sd =
bK

p
≈

b2
K

d2 (4)

The segmental dissymmetry, Sd values estimated using data provided in Fetters
et al. [30, 193, 219] range from 2.5 to 4.5 for flexible polymers. The criteria for
coil-stretch hysteresis can be effectively rewritten as

𝜍s∕𝜍c ≈ LE∕ ln(NKS0.5
d ) (5)

in terms of flexibility, extensibility, and segmental dissymmetry. Thus, coil-stretch
transitions are most likely to occur for polymers with small segmental
dissymmetry and large extensibility. Since the value of Sd is directly corre-
lated with segmental shape and size, its value determines the criteria for the
coil-stretch transition and affects the propensity to form liquid crystalline phases
[2, 205]. By identifying the central role of Sd (segmental dissymmetry), defined
in terms of packing length, p in determining coil-stretch hysteresis, we make a
formal connection between the macromolecular parameters needed to describe
the stretched chain hydrodynamics in dilute solution with the chain dynamics in
entangled solutions and melts.
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The value of Sd can be determined from rheological measurements and
empirical correlations established in the literature for entangled polymers
[30, 192, 193, 219–221]. For example, the number of entanglement strands,
Pe in the volume equal to the cube of tube diameter (or a = N1∕2

e bK) is given
by Pe = a/p. For flexible polymers, seemingly chemistry-independent con-
stant values of Pe ≈ 20 is observed. Thus, the Sd value can be computed to be
Sd = Pe∕N1∕2

e ≈ 20∕N1∕2
e for flexible polymers, showing a direct connection of

segmental entanglement molecular weight, Me.
The entanglement molecular weights of polysaccharides are hard to measure

as polysaccharide melts cannot be prepared, and reliable measurement of the
plateau modulus of entangled polysaccharide solutions is also challenging.
However, recently Horinaka et al. [222, 223] computed the Me and Pe values for
several polysaccharides by utilizing rheological measurements in ionic liquids
and determined Pe of 40 for amylose, 72 for carboxymethylcellulose (CMC),
and 220 for cellulose, respectively. We hereby conjecture that the contrast
between flexible and semi-flexible polymers observed in terms of entanglement
concentration (or the response to shear flow), pinching dynamics, the values of
Pe, and the response to an extensional flow field, all appear to be correlated with
the relatively high Sd of polysaccharides.

3 Influence of Three Macromolecular Properties on
Rheological Response

3.1 Contrasting Steady Shear Viscosity Measurements for Aqueous
HEC and PEO Solutions

Shear viscosity measurements, as a function of shear rate obtained for a range
of concentrations of aqueous solutions of HEC and PEO using a torsional
rheometer, are shown in Figure 3a. A concentration-dependent increase in
viscosity can be observed for both polymers. However, the zero-shear viscosity,
𝜂0 values show a stronger increase for HEC than for PEO solutions, even
though 𝜂0 values are comparable at matched concentrations below c= 0.17 wt.%.
Figure 3b contrasts the polymer contribution to solution viscosity in terms of
computed specific viscosity 𝜂sp = (𝜂0 − 𝜂s)/𝜂s. At the critical overlap concen-
tration, c*≈ 0.17 wt.%, 𝜂sp = 1 and the solution viscosity is twice the solvent
viscosity, 𝜂s = 0.9 m Pa • s. Both overlap concentration and intrinsic viscosity,
[𝜂]= 1/c*= 5.98 dl g−1 obtained for the aqueous HEC solutions, match the values
obtained for the aqueous PEO solutions, implying that both polymeric systems
utilized in this study at matched concentrations exhibit matched values of
overlap parameter, c/c* or Berry number, c[𝜂]. Therefore, dilute solutions of both
polymers that have matched the value of c/c* or c[𝜂] appear indistinguishable
in shear, as shown in Figure 3a. Although the nondilute solutions (c[𝜂]> 1) of
both HEC and PEO exhibit shear thinning, the HEC solutions show higher zero
shear viscosity values, a higher degree of shear thinning, and exhibit a stronger
concentration-dependent increase in specific viscosity at matched c[𝜂] values.
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Specific viscosity of HEC solutions exhibits three distinct scaling regimes:
𝜂sp ∝ c in dilute (c< c*), 𝜂sp ∝ c2 in the semi-dilute, unentangled (c*< c< ce), and
𝜂sp ∝ c4.3 in the entangled (c> ce) regime. The scaling exponent in the semi, dilute
entangled regime (4.3, as 𝜂sp ∼ c4.3) agrees well with the value 𝜂sp ∼ c4.2 for c> ce
reported by Del Giudice et al. [224]. In contrast, the specific viscosity data for
aqueous PEO solutions (see Figure 3b) exhibit only two regimes: 𝜂sp ∝ c (c< c*),
and 𝜂sp ∝ c2.7 for unentangled, semi-dilute (c*< c< ce) solutions. The entangled
regime for flexible polymers [1] typically lies beyond ce/c*≈ 5–10 and is beyond
the range for PEO concentrations investigated herein. In contrast, for aqueous
HEC solutions, the entangled regime with a stronger concentration dependence
emerges beyond ce = 0.5 wt.% (corresponds to ce/c*≈ 3), as shown in Figure 3b.

3.2 Pinching Dynamics of Unentangled Semi-Dilute PEO Solutions

Figure 4a shows a schematic of the DoS rheometry set-up used for obtain-
ing the neck shape evolution and radius evolution datasets. Figures 4b-e
present a comparison between two semi-dilute PEO solutions that show
pronounced EC and finite extensibility (FE) or terminal viscoelastocapillary
(TVEC), that lead to a substantial delay in pinch-off. As Oh< 0.1 for c/c*< 4,
the solution with c= 0.5 wt.% regime shows IC regime, whereas the higher
concentration c= 1.5 wt.% polymer solution exhibits a VC response [19, 155].
After the initial IC regime, distinct viscoelastic EC and TVEC regimes can be
observed and analyzed for c= 0.5 wt.% solution in Figure 4d, even though CaBER
measurements are inaccessible for such low viscosity, weak elasticity fluids (see
the detailed analysis of the range measurable with CaBER in a contribution by
Rodd et al. [25]). The radius evolution data for both solutions (Figure 4d–e)
show a clear transition to the EC regime after time tc. The transition is delayed
for higher concentration PEO solutions with higher viscosity and elasticity. The
transition to the EC regime is accompanied by a significant decrease in thinning
rate Ṙ = −dR∕dt and the extension rate defined as �̇� = −2Ṙ(t)∕R(t). The radius
evolution data in the EC regime appears as a straight line on the semi-log plots.

The form given in the equation for the EC regime includes a timescale, tc
defined at the onset of the EC regime. Carrying out analysis in this shifted time
provides more physically reasonable values for GE. We note that GE ≠G≡ 𝜂p𝜆s or
the value of GE cannot be computed using the product of polymer contribution
to solution shear viscosity and shear relaxation time. Furthermore, it follows that
the radius at IC/VC to EC transition defines the prefactor in the EC equation in
Table 1 (and radius at this first transition Rc ≈R0(GER0/2𝜎)1/3 is also determined
by the interplay of elasticity and capillarity). While DoS rheometry allows robust
analysis of both EC regime and 𝜆E values for semi-dilute polymer solutions (as
detailed in our previous study [41]), Clasen [177] showed that the corresponding
analysis of CaBER data is fraught with larger errors (others showed that com-
parison with theory often requires the inclusion of a prestretch [103, 120]). Con-
sequently, the timespan between two transitions and the connections with the
macromolecular properties and conformational transitions, remain unexplored.

In the EC regime, filament thinning proceeds with a constant extensional
rate such that the effective WiE = �̇�𝜆E = 2∕3 is the same for all measurements
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despite molecular weight or concentration variations, even though the thinning
rate and the actual extensional rate for each fluid is set by its extensional
relaxation time. Though the strain rate exhibits a constant value, the Hencky
strain 𝜀= 2 ln(R0/R(t)) increases monotonically, accompanied by a progressive
build-up of macromolecular strain and orientation, leading to the emergence of
the TVEC regime due to the finite extensibility effects. Though the extensional
rate remains constant in the EC regime, it rises after the EC-TVEC transition
occurs at the instant tFE. The TVEC regime yields the value of terminal, steady
extensional viscosity and Tr∞ = 𝜂∞E ∕𝜂 is the terminal Trouton ratio. The value
of Rayleigh time tR is ∼2 ms for PEO solutions (computed using outer nozzle
radius), and tf refers to the filament lifespan. The existence of steady, terminal
extensional viscosity implies an upper bound to the viscoelastic stresses that can
be generated from the interplay between the effect of stretching and orientation.

3.3 Contrasting Radius Evolution Data for Unentangled HEC and PEO
Solutions

Even though the shear viscosity measured for matched dilute concentrations of
PEO and HEC are quite similar, neck shape and filament radius evolution char-
acterized using DoS rheometry protocols (see Figure 5a–b) exhibit contrasting
behavior. The radius evolution for pure water (c/c* = 0, shown as a dash-dotted
blue line) exhibits characteristic inertio-capillary (IC) pinching behavior [19, 70,
71, 78, 153, 154]. The two dilute PEO solutions at c= 0.05 wt.% (blue circles, dilute
regime, c[𝜂]= c/c*≈ 0.3), and c= 0.17 wt.% (gold diamonds at overlap concentra-
tion with c/c*≈ 1), respectively, also display an initial IC regime, followed by a
distinct transition to an EC regime. The EC regime appears linear in a semi-log
plot of filament radius versus time, as shown in Figure 5b. At first glance, the
EC response seems to be absent or imperceptible in the radius evolution plots
of dilute HEC solutions. However, the neck shape before pinch-off obtained for
the dilute HEC solutions is quite distinct from a single sharp cone obtained for
water and other low viscosity Newtonian fluids that undergo IC pinching. The
image sequence for the HEC solution at the overlap concentration (0.17 wt.%,
Figure 5a) reveals that the conical neck is connected to the sessile drop by a slen-
der cylindrical filament in the final stage before the pinch-off event.

A close examination of the neck shapes for an extended range of concentra-
tions for the aqueous HEC solutions shows that the conical neck progressively
disappears in favor of slender, cylindrical shape in nondilute solutions of HEC
(c[𝜂]> 1) only after the solution shear viscosity rises to ∼10 times the solvent
viscosity (detailed in a companion paper [189]). In contrast, a slender, cylindrical
filament shape arises for the PEO solutions in dilute systems, even at c[𝜂]= 0.1,
as described in our earlier papers [40, 41, 77, 79]. However, the presence of a
slender, cylindrical filament, a delayed pinch-off (the presence of two distinct
regimes for c= 0.17 wt.% solution), and a lack of satellite drop formation show
that HEC as an additive alters the pinching dynamics, the extensional rheology
response, and the drop size distribution. The contrast in capillarity-driven
pinching dynamics and response to extensional flows are further highlighted in
the extensional rate versus time plot, as shown in Figures 5c-d. For the 0.05 wt.%
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Figure 5 Contrasting the influence of the three chemistry-dependent macromolecular
parameters (flexibility, extensibility, and segmental dissymmetry) on neck shape, radius
evolution, and extensional rate variation with time. (a) Radius evolution datasets for two HEC
solutions show a slower pinching rate and a delayed pinch-off compared to water. The neck
shape, shown for 0.05 wt.% HEC, appears to have a pronounced cone characteristically
observed during inertio-capillary pinching. (b) Radius evolution for PEO solutions shows the
transition from an inertio-capillary (IC) to elastocapillary (EC) pinching. Although the shear
viscosity values of HEC and PEO solutions are nearly matched, the inset shows that slender,
cylindrical filament forms in the case of PEO solutions. The filament lifespan, tf = 20 ms for the
aqueous PEO solution, is much longer than tf = 7 ms for the aqueous HEC solution. Here, the
elastocapillary span provides a dominant contribution to the filament lifespan. (c) The
extensional rate, determined from the filament radius evolution data, appears to increase
monotonically for the HEC solutions, rising to a relatively high value of �̇� ≈ 104 s−1. Two
regimes were observed for the solution with higher concentration (c = 0.17 wt.%). (d) For PEO
solutions, the extensional rate exhibits a characteristic increase in the IC pinching regime, and
displays a sudden and precipitous drop at the onset of EC behavior. Extensional rate maintains
a constant value in the EC regime but rapidly climbs again in the terminal viscoelastocapillary
(TVEC) or the finite extensibility regime.

HEC solution, the extensional rate, �̇� = −2Ṙ∕R computed using the radius
evolution data of a pinching filament increases monotonically, whereas the rate
data for the 0.17 wt.% HEC solution (at c= c*), appears to show a short-lived EC
regime. In contrast, at matched concentrations, the extensional rate increases
with time in the IC regime for the PEO solution, but it plunges precipitously
after the IC-EC transition, exhibiting a discrete and distinctive shift to a lower
rate (Figure 5d).
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The contrast in behavior displayed at c[𝜂]= c/c*≈ 1 in Figure 5 is particularly
remarkable as any a priori estimates of viscous (matched shear viscosity), elastic
(comparable Zimm relaxation time: 𝜆PEO

Z = 0.1 ms and 𝜆HEC
Z = 0.07 ms), and

capillary stresses as well as a prediction for pinching dynamics in EC regime
would be similar if based on the Entov–Hinch theory or its variants that utilize
either shear relaxation time or the same effective relaxation time (for both IC and
EC regimes) [19, 44, 88, 89, 95, 103, 166, 175, 225]. Furthermore, the 𝜆s values
cannot be otherwise measured or deduced using shear rheometry in many other
cases, including those for the unentangled polymer solutions in relatively low
viscosity solvents like water, discussed here. The influence of elasticity for dilute
solutions can be gauged based on the estimated value of Zimm relaxation time
𝜆z =

1
𝜁 (3𝜈)

[𝜂]𝜂sMw

RT
(for a nondraining, unperturbed coil in a single chain limit).

Here the prefactor 1∕𝜁 (3𝜈) = 1∕
∑∞

i=1(1∕i3𝜈) depends on the solvent quality
exponent, 𝜈. However, the estimated Zimm times only give the lowest threshold
for the relaxation time as an accurate description of polymer dynamics requires
accounting for both concentration-dependent and conformation-dependent
hydrodynamic and EV interactions [5–10, 15, 16, 26, 37, 40, 41, 45–47, 77, 79,
190, 191, 215–218, 226–229].

We posit that the discrete transition in the extensional rate versus time data for
PEO solutions is a signature of an underlying coil-stretch transition that occurs
when the ratio of stretching rate to the relaxation rate (computed using shear
relaxation time of unperturbed coils, 𝜆s) exceeds the value of 1/2 or a critical
extensional rate such that Wi = 𝜆s�̇�c→s > 1∕2. The measured extensional rate in
the EC regime corresponds to a low Weissenberg number Wis = 𝜆s�̇�EC < 0.1 if
shear relaxation time is used for the estimate. Prabhakar et al. [26, 45] recently
argued that following the coil-stretch transition, the conformation-dependent
drag of flexible polymer chains leads to a coil-stretch hysteresis, allowing a lower
extensional rate to be effective in preventing the already stretched chains from
relaxing back. In other words, the extensional rate in the EC regime stays above
the critical extensional rate at the stretch-coil transition, or �̇�s→c < �̇�EC < �̇�c→s.
The coil-stretch transition leads to a profound change in the coil conformation,
which results in an effectively longer relaxation time of the stretched chains,
measured or reported as extensional relaxation time, 𝜆E. This leads to a high effec-
tive Weissenberg number, WiEC = 𝜆E�̇�EC ≈ 2∕3 in the EC regime. Consequently,
the chains continue to experience a sustained stretching in the EC regime, and
build-up macromolecular strain, leading to the TVEC (or the finite extensibil-
ity) regime that can be analyzed to obtain a steady, terminal extensional viscosity
value that is independent of both strain and strain rate. In contrast, for HEC
solutions, even though dynamics relatively close to the pinch-off event exhibit a
non-Newtonian or viscoelastic response, the discrete jump or overshoot in exten-
sional rate, presumably associated with the changes in macromolecular dynamics
after coil-stretch transition, is absent.

Several literature studies recognize that the experimentally obtained radius
evolution data for flexible polymer solutions using dripping, jetting or
CaBER-like stretched liquid bridge protocols cannot be quantitatively and self-
consistently modeled by numerical or analytical solutions based on Oldroyd-B,
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FENE-P or Giesekus constitutive models (even if multiple modes are used) [26,
43, 45, 76, 103, 104, 120]. Historically, Entov and Hinch [120] compared their EC
expression to the experimental data reported by Liang and Macklay [94]. As the
initial VC regime was not resolved in the radius evolution data obtained from
stretched liquid bridges [94], fortuitously, the comparison was carried out for
tc = 0 (see EC equation). For nondilute solutions, their assumption 𝜆EC = 𝜆s is
somewhat justified. Nevertheless, Entov and Hinch [120] found that including a
prestretch, P in the prefactor (or using a product of G and P) was necessary to
match the radius evolution profiles obtained experimentally. Subsequent studies
by Anna and McKinley [103], and Tirtaatmajda et al. [43], among others [76,
95] reiterate that the quantitative comparisons are unsuccessful in describing
the onset (i.e., the transition point referred here in terms of Rc and tc), duration
(EC span, ΔtEC) and decay constant (𝜆EC, used to obtain extensional relaxation
time, 𝜆E = 𝜆EC) of the EC regime by use of moduli and relaxation times obtained
from shear rheology measurements or theory. A few recent theoretical studies
revisit the problem of capillarity-induced pinching by utilizing constitutive
models that include finite extensibility but do not show coil-stretch hysteresis
[95, 166, 175, 225]; however, comparisons with experiments are not included,
the possibility of coil-stretch transition (and hysteresis) is not considered,
and the influence of large stretching on relaxation dynamics of stretched
polymer dynamics is also not evaluated. The influence of the coil-stretch
transition and hysteresis on the concentration-dependent variation of exten-
sional relaxation time, the role of free-surface flows and non-Newtonian fluid
mechanics, and the influence of chemical structure are discussed in the later
sections.

We contend that in capillarity-driven pinching, the progressive decrease
in neck radius leads to a corresponding increase in the applied stress. The
changes in extensional rate over time emulate and are influenced by, the
corresponding conformational changes in macromolecules. Thus, extensional
rheometry protocols based on capillarity-driven pinching can be considered
stress-controlled experiments, in contrast to the extensional rate-controlled
measurements carried out by Schroeder et al. [8, 9, 16, 215] and by many
groups that investigated flow birefringence in stagnation point flows [24, 50,
114, 230]. As the flow fields within pinching filaments emulate the real flows
encountered during drop formation and liquid transfer, we suggest that an
understanding of coil-stretch transition and hysteresis can be used to outline
the quantitative criteria for how the choice of polymer chemistry and molecular
weight influence processibility, as seen here for HEC and PEO with comparable
molecular weights, and similar coil size or overlap concentration. A significant
contrast exists in the value of flexibility of two polymers for the local flexibility as
characterized by the Kuhn segment size and the global flexibility characterized
by NK. A comparison of macromolecular parameters is presented in Table 2
for flexible PEO (Mw = 1× 106 Da) and the semi-flexible HEC of a comparable
molecular weight (Mw = 7.2× 105 Da).

Likewise, the extensibility, L2
E values are nearly two orders of magnitude higher

for the PEO solutions. The value of L2
E = 3840 is computed for the flexible PEO

(Mw = 1× 106 Da) in contrast with L2
E = 42 obtained for the semi-flexible HEC
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Table 2 Macromolecular parameters for aqueous PEO and HEC molecules.

Polymer PEO HEC Reference

Mw (kg mol−1), molecular weight (avg) 1000 720 Average provided
by the supplier

M0 (g mol−1), monomer molecular weight 44 272
Rg (nm), radius of gyration 68 68 224
⟨R2

0⟩1∕2 (nm), end-to-end distance 167 167 Computed [10]
bK (nm), Kuhn segment length 1.1 20–60a) 114 231
d (nm), Kuhn segment diameter 0.5 1 Computed [10]
bK/d, Kuhn segment aspect ratio 2.2 20 Computed [1]
NK, number of Kuhn segments 9280 70 Computed [124]
C∞, characteristic ratio 6.7 21.4 232
l (nm), bond length 1.54 0.77 232
Lc =Rmax, (μm), contour length 10.2 1.3 Computed [124]
L2

E, finite extensibility parameter 3720 46 Computed [24]
𝜍s/𝜍c, drag coefficient ratio 7.8 1.4 Computed [12]
[𝜂] cm3 g−1, intrinsic viscosity 598 598
𝜆z (ms), Zimm relaxation time 0.1 0.07 Computed [10]
𝜆R (ms), Rouse relaxation time 0.14 0.09 Computed [10]

a) 20 is used in this study.

of a comparable molecular weight (Mw = 7.2× 105 Da). In the present context,
for HEC molecules of Mw = 720 kg mol−1 in water, the ratio of drag coefficients
equals 1.4, while for PEO molecules of Mw = 1000 kg mol−1 in water, the ratio
equals 7.8. Thus, the observation of the coil-stretch transition in PEO is expected
or predicted based on Eq. (3). Computation using the Eq. (3) suggests that a
molecular weight higher than 107 g mol−1 is needed to observe the coil-stretch
hysteresis in unentangled HEC solutions!

3.4 Transient Extensional Viscosity of Aqueous HEC Solutions
Measured Using DoS Rheometry

At the matched degree of overlap or c/c* value, the radius evolution data for
nondilute PEO solutions (c> c*) also exhibit a pronounced EC regime in contrast
to the HEC solutions as shown in Figure 6. For the PEO solutions, EC span, ΔtEC
makes the primary contribution to filament lifespan, tf. In contrast, for HEC
solutions, ΔtEC ≪ tf, and the short ΔtEC results in a relatively short filament
lifespan for dilute solutions as well as for the data shown in Figure 6a for
semi-dilute solutions at c/c*= 3 (even though the shear viscosity of the HEC
solution is marginally higher). Apparent extensional viscosity of HEC solutions
was determined and compared with the extensional viscosity calculated for PEO
solutions, as shown in Figure 6. As the interplay of tensile viscoelastic stresses 𝜂E�̇�
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Figure 6 Comparison of the neck shape, radius evolution, extensional viscosity, and Trouton
ratio as a function of Hencky strain plots for semi-dilute aqueous PEO and HEC solutions.
(a) Image sequence contrasts the neck shape and shape evolution at c/c*= 3. The time
elapsed between progressive snapshots is Δt = 1 ms for the HEC solution and Δt = 6 ms for
the PEO solution. (b) Radius evolution in time data show striking contrast and the dashed line
represents the elastocapillary fit to the PEO data using expression included in Table 1. The PEO
solution thins remarkably slowly, even though the shear viscosity of the HEC solution is higher
at c/c*= 3. (c) Lower extensional viscosity values are measured for the solutions of less flexible
HEC than PEO at matched concentrations (and matched Berry number). (d) The Trouton ratio
computed using the ratio of extensional viscosity shown in (c) and zero shear viscosity values
show that the comparative strain-hardening and overall extensional viscosity of the aqueous
solutions of flexible polymers are much higher than those obtained for HEC solutions. For
these nondilute solutions, the Trouton ratio decreases as polymer concentration increases.

and the capillary stress 𝜎/R(t) determines the radius evolution for viscoelastic
solutions, a transient extensional viscosity measure, 𝜂E = 𝜂+E (t, �̇�) (also referred
to as tensile growth coefficient) can be obtained by using the following equation:

𝜂E = 𝜎

R(t)�̇�(t)
= 𝜎

−2Ṙ(t)
(6)

Although the extensional rate stays constant during the EC regime, the Hencky
strain or the total accumulated strain in the liquid filament, 𝜀= 2 ln(R0/R(t))
increases steadily, and hence conventionally [19], the measured apparent
extensional viscosity in capillary-thinning studies is plotted as a func-
tion of Hencky strain, as shown in Figure 6c for HEC and PEO solutions.
Both flexible PEO and the semi-flexible HEC solutions exhibit considerable
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extensional strain-hardening response, even though the shear viscosity exhibits
rate-dependent decrease associated with shear thinning caused by orientation of
mildly perturbed coils. Furthermore, the plotted data show that at a comparable
degree of overlap (i.e., the same Berry number), the HEC solutions exhibit lower
extensional viscosity values than PEO solutions. As the concentration of HEC
increases, an increase in both transient and terminal extensional viscosity is
observed.

For the range of concentrations shown in Figure 6c, the shear viscosity data
show a relatively mild shear-thinning. Therefore, zero shear viscosity 𝜂0 can
be used to plot a dimensionless extensional viscosity measure, known as the
Trouton ratio, Tr = 𝜂E(�̇�, 𝜀, t)∕𝜂0 (plotted in Figure 6d). For these nondilute
solutions, the value of the Trouton ratio decreases as concentration increases.
Additionally, the Trouton ratios obtained for semi-dilute solutions of a less
flexible polymer (HEC) are several orders of magnitude lower despite having
a higher zero shear viscosity than PEO solutions of the same concentrations.
Thus, the viscoelastic stresses contributed by extended HEC polymers are much
lower than those contributed by stretched PEO chains. The Trouton ratio values
for PEO solutions (100<Tr< 5000) are much higher than for HEC (Tr≤ 100),
as shown in Figure 6.

3.5 Concentration-Dependent Extensional Relaxation Times

EC fits to the radius evolution data yield the concentration-dependent values of
extensional relaxation times for both polymers, plotted in Figure 7. The absolute
value of the extensional relaxation time measured for aqueous PEO solutions at
a matched concentration by weight and matched Berry number is much higher.
The extensional relaxation time for aqueous PEO solutions shows the two scaling
exponents characteristic of dilute (𝜆E ∝ c0.65; for 0.1c*< c< c*) and intrinsically
semi-dilute, entangled PEO solutions (𝜆E ∝ c for c> c*) previously described and
determined [40, 41] using DoS rheometry studies. We argued that the scaling
laws arise from partial screening of EV interactions in the dilute regime, whereas
for c> c* the EV interactions get effectively screened at all length scales [41]. In
dilute solutions, 𝜆E ∝ c0.65 was also reported by Tirtaatmadja et al. [43] using drip-
ping experiments for PEO in the glycerol–water mixture and by Clasen et al. [44]
for dilute polystyrene solutions in diethyl phthalate (both studies used good sol-
vents more viscous than water). However, as the HEC chains do not undergo
coil-stretch transition, a weaker concentration dependence 𝜆E ∝ c0.32 associated
with the Rouse–Zimm chain in a good solvent (blob model) is observed in the
semi-dilute regime (c*< c< ce) [1]. The extensional relaxation time values for the
entangled HEC solutions (c> ce) exhibit a substantial increase with concentra-
tion 𝜆E ∝ c4.3 that mimics the exponent observed for a concentration-dependent
increase in specific viscosity 𝜆E ∝ 𝜂sp ∝ c4.3. Furthermore, both coil–coil overlap
and EV interactions are influenced by the degree of stretching, conformational
anisotropy, and tension applied to the chains, and standard blob theory was not
designed to account for all three effects.

A comparison of HEC and PEO solutions shows that the concentration-
independent values of 𝜆E can be measured at much lower concentrations
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Figure 7 Concentration-dependent variations in relaxation time values for aqueous HEC and
PEO solutions. Extensional relaxation times for the aqueous HEC solutions are found to be
lower than the values for the aqueous PEO solutions at matched concentration and matched
Berry numbers. However, as the HEC solutions can entangle at a much lower concentration,
the relaxation time shows a stronger concentration-dependent variation above c > 0.5 wt.%.
The PEO solutions show three regimes: (i) concentration-independent regime below
c = 0.001 wt.%, (ii) an extended regime with concentration-dependent increase captured by
exponent 0.65 for 0.1c*<c< c*, and (iii) intrinsically semi-dilute solution behavior above c*.
The plot identifies a theoretical estimate for critical minimum concentration, cmin needed for
generating elastic stress that leads to the appearance of the elastocapillary regime. The
existence of a concentration-independent regime is also noted.

for PEO than are possible for HEC. Notwithstanding any imaging and image
analysis challenges, Clasen et al. [44] determined that there exists a critical
concentration cmin = (3MW𝜂s)∕(2RT𝜆zL2

E) below which the polymer carries less
stress than a viscous solvent (even when the chains become fully stretched) and
the extensional relaxation time can no longer be deduced. We can recast the
formula for cmin using the formula for Zimm relaxation time as cmin∕c∗ ≈ 3∕L2

E.
Using Table 2, we estimate, cmin = 1.4× 10−4 wt.% for PEO solutions, and nearly
two orders of magnitude higher concentration cmin = 1.4× 10−2 wt.% for HEC
solutions. Thus, the calculated cmin concentration for HEC or PEO is only
6.4 times lower than the minimum concentration plotted in Figure 7.

3.6 Segmental Dissymmetry and Stretched Overlap Concentration

The experimentally determined value of HEC concentration at which the
topological entanglements begin to exist in the polymer solution was found to
be c≈ 0.5 wt.% or at ce/c*≈ 3. It is well-known that semi-dilute solutions have
large concentration fluctuations, and above a critical c**, the polymer solution
behavior can be described using a mean-field theory for concentrated solutions.
Since the value of c∗∗∕c∗ ≈ N3𝜐−1

K (d2∕b2
K)

3𝜐−1 depends on the Kuhn segment
shape and size (assuming EV value for a thermal limit, b2

Kd to get an upper limit),
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we can rewrite the expression in terms of segmental dissymmetry as follows,
c**/c*≈ (NK/Sd)3𝜐− 1. The lower absolute values of c** (and possibly entangle-
ment concentration) result from fewer Kuhn segments and larger segmental
dissymmetry for polysaccharides. More recently, Dorfman and coworkers [204]
determined how the effective EV parameter (or the solvent quality exponent)
itself depends on the number of Kuhn segments and the ratio of Kuhn segment
length to diameter: thus, effectively on Sd.

The extensional relaxation time data for both HEC and PEO solutions exhibit
a nearly constant value below a material-dependent concentration value we
christen as stretched overlap concentration, c∗s highlighting that for stretched
chains, the inter-chain contacts are present even if the solution is considered
nominally dilute based on the c* value computed using the unperturbed coil
size. We postulate that the stretched overlap concentration, c∗s can be estimated
using theory for semi-dilute solutions for rod-like polymers. According to Doi
and Edwards [2], the semi-dilute regime for rod-like polymers spans a range
between (i) the concentration at which the average distance between polymers
𝜗−1/3 is less than the rod length or 𝜗1R3

s < 1, and (ii) the concentration 𝜗2dR2
s < 1

such that the constraint on their crossing each other influences the dynamic
properties of finite-diameter rods. The experimental results and theoretical
arguments suggest that the EC regime arises long before the coils get fully
stretched. We utilize the second expression to obtain an overlap concentration
for stretched chains as c∗s∕c∗ ≈ 4R3

g∕dR2
s or c∗s∕c∗ ≈ N𝜈

KS1∕2
d ∕L2

E = NKS1∕2
d ∕L3

E.
The estimated value of c∗s∕c∗ ≈ 0.006 for PEO solutions is within a factor
of 2 of the experimentally observed value. Likewise, Figure 7 data shows
that the estimated value c∗s∕c∗ ≈ 0.3 for the HEC solutions is quite close to
the experimentally observed value of both stretched and standard overlap
concentrations.

4 Conclusions

A comparison of shear and extensional rheology responses of the aqueous
solutions of a semi-flexible polysaccharide, 2-hydroxyethylcellulose (HEC)
against the aqueous solutions of flexible poly(ethylene oxide) (PEO) is carried
out such that the equilibrium coil size and overlap concentration (or intrinsic
viscosity) are nearly matched. Hence, a matched concentration by weight
corresponds to a matched value of the Berry number. As expected, the steady
shear viscosity of both polymers is comparable at matched concentrations in the
dilute regime. Steady shear viscosity of nondilute HEC solutions was higher than
the viscosity of PEO solutions as HEC solutions cross over into the entangled
regime at a lower concentration than PEO solutions. Aqueous solutions of both
polymers show a concentration-dependent increase in extensional relaxation
time and filament lifespan (or pinch-off time). Even though the shear viscosity
values are matched for the dilute solutions, the PEO solutions exhibit a longer
filament lifespan, and higher values of both extensional relaxation time and
extensional viscosity. At all concentrations, the PEO solutions exhibit higher
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values of the terminal extensional viscosity, even though the shear viscosity
of nondilute HEC solutions (c> c*) is much higher than the PEO solutions at
matched concentrations (and c/c* values). The nondilute HEC solutions exhibit
a pronounced shear-thinning behavior. For industrially relevant concentrations
(typical c< 1 wt.%), the HEC solutions also exhibit a shorter filament lifespan
than the PEO solutions. Both attributes make HEC advantageous as a rheology
modifier for dispensing applications: at low deformations, the dispersion behaves
like a high viscosity fluid and does not “run” or spread (helps in controlling
sagging in paints), whereas, at higher rates encountered during pumping or
dispensing, the dispersion flows relatively easily. Furthermore, significantly faster
pinching rate and shorter filament lifespan of the unentangled HEC solutions
than the unentangled PEO solutions (compared here at matched concentration
for matched unperturbed coil size) make HEC and other polysaccharides
preferred candidates as rheology modifiers for spraying, printing, and painting
applications.

Aqueous PEO solutions display a very pronounced transition from inertio-
capillary to a long EC regime in radius evolution of pinching filament for dilute
and some semi-dilute solutions (for dimensionless concentration values up to
c/c* = 5). We argue that the transition is associated with a discrete change in
extensional rate to a lower value, associated with the changes in macromolecular
dynamics after undergoing coil-stretch transition. In contrast, the radius evo-
lution data of pinching filament of the aqueous solutions of semi-flexible HEC
display only a weak, relatively short-lived EC tail, and the extensional rate dis-
plays a nearly monotonic increase with time as the pinch-off event is approached,
implying the absence of coil-stretch transition in this case. The calculation of
coil-stretch transition and hysteresis criteria using the ratio of drag coefficients
requires the value of an additional length scale, d that represents the hydrody-
namic diameter of a Kuhn segment. Though value of d is often unknown, we
propose to use the knowledge of packing length, p that is an additional, but known
length scale required for describing entangled solution and melt rheology. We
rewrite the ratio of Kuhn segment length to diameter in terms of an effectively
comparable ratio of ratio of Kuhn length to packing length that we christened as
segmental dissymmetry, Sd. Even if the coil-size, dilute solution rheology or val-
ues of Zimm relaxation time are matched, the coil-stretch transitions are most
likely to occur for the more flexible polymers that have smaller segmental dis-
symmetry.

We postulate and argue that the same set of three macromolecular param-
eters – flexibility, extensibility, and segmental dissymmetry – enable us to
distill the influence of chemical structure on macromolecular dynamics and
viscoelastic effects associated with coil-stretch transition and hysteresis [8, 9,
16, 215, 217], as well as entanglements [30, 193, 219] and consequently, on the
shear and extensional rheological response, capillarity-driven pinching dynam-
ics, and processability. We posit that the constitutive models that explicitly
include conformation-dependent drag, finite extensibility, and the physics of
coil-stretch transition (and hysteresis) could prove beneficial for capturing the
nonmonotonic behavior of extensional rate displayed by the PEO solutions in
response to a progressively increasing capillarity-induced stress. However, for
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the unentangled HEC solutions, the shear relaxation time values estimated
using the theory of polymer dynamics as well as using fits to the steady shear
viscosity data are comparable to the values of 𝜆E extracted from the relatively
short-lived EC regime. We surmise that the capillarity-driven pinching for HEC
solutions is more amenable to analysis by constitutive models based on a single
relaxation time (𝜆E = 𝜆s) as long as the finite extensibility effects are included to
capture the underlying macromolecular physics. We anticipate that our data and
analysis will help in further development of new constitutive models and deeper
understanding of how chemical structure and solvent-polymer interactions,
as imbibed into three macromolecular properties (flexibility, extensibility, and
segmental dissymmetry) affect the static and dynamic properties of polymers in
solution.
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