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Spreading, pinching, and coalescence: the
Ohnesorge units†

Marc A. Fardin, ‡*a Mathieu Hautefeuille abc and Vivek Sharma ‡d

Understanding the kinematics and dynamics of spreading, pinching, and coalescence of drops is

critically important for a diverse range of applications involving spraying, printing, coating, dispensing,

emulsification, and atomization. Hence experimental studies visualize and characterize the increase in

size over time for drops spreading over substrates, or liquid bridges between coalescing drops, or the

decrease in the radius of pinching necks during drop formation. Even for Newtonian fluids, the interplay

of inertial, viscous, and capillary stresses can lead to a number of scaling laws, with three limiting self-

similar cases: visco-inertial (VI), visco-capillary (VC) and inertio-capillary (IC). Though experiments are

presented as examples of the methods of dimensional analysis, the lack of precise values or estimates

for pre-factors, transitions, and scaling exponents presents difficulties for quantitative analysis and

material characterization. In this tutorial review, we reanalyze and summarize an elaborate set of

landmark published experimental studies on a wide range of Newtonian fluids. We show that moving

beyond VI, VC, and IC units in favor of intrinsic timescale and lengthscale determined by all three

material properties (viscosity, surface tension and density), creates a complementary system that we call

the Ohnesorge units. We find that in spite of large differences in topological features, timescales, and

material properties, the analysis of spreading, pinching and coalescing drops in the Ohnesorge units

results in a remarkable collapse of the experimental datasets, highlighting the shared and universal

features displayed in such flows.

In a 1936 study on ‘‘the formation of drops at nozzles’’,
Ohnesorge showed that jetting of Newtonian fluids can be
classified into three cases on a plot with two dimensionless
groups:1 the Reynolds number (Re*) as the x-axis and
Z = Z (Re*), referred to in the modern literature as the Ohne-
sorge number (Oh) as the y-axis.2–4 The succinct plot incorpo-
rated: (i) axisymmetric breakup, investigated theoretically and
experimentally by Rayleigh for inviscid fluids,5 (ii) wavy
breakup studied experimentally by Haenlein,6 and theoretically
by Weber,7 and (iii) atomization.6,7 The transition from a
laminar to a turbulent jet with increasing imposed velocity
(U) occurs with enhancement in Re* � rDU/Z (the star subscript
is here to distinguish this Reynolds number from the one

associated with boundary layers, which we will discuss in the
review). However, the Ohnesorge plot Re* vs. Oh shows that the
transitions between jetting regimes depend on a dimensionless

group, Oh ¼ Z=ðrGDÞ
1
2 that is independent of U. The Ohne-

sorge number Oh incorporates three intrinsic fluid properties:
viscosity (Z, with dimensions M. L�1.T�1), surface tension
(G, M. T�2), and density (r, M. L�3), and includes one extrinsic
lengthscale (D, which can be the nozzle diameter or drop size).
The Ohnesorge number can alternatively be represented as the
square-root of the ratio of an intrinsic length, co � Z2/rG and
the extrinsic length D. Fascinatingly, Haenlein and Weber
discussed the breakup time of viscous fluids in a dimensionless
form, scaled by an intrinsic time, to � Z3/rG2.

In this review, we revisit and reanalyze the experimental
universe of spreading, coalescence and pinching drops to show
that the two intrinsic measures of length and time, co and to,
referred to as the Ohnesorge units, provide a cohesive, uni-
versal, and succinct representation of the kinematics and
interpretation of governing dynamics of Newtonian fluids.

Spreading, pinching and coalescence of drops are examples
of interfacial or free surface flows, primarily governed by three
stresses: inertial, viscous, and capillary. The rich and complex
dynamics that arise from the interplay of these three stresses
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are described in many excellent books and reviews.2–4,8–21 The
motivations for investigating the formation of drops and their
coalescence and spreading behavior ranges from an innate
curiosity about the physical world around us to necessity,
especially as countless applications involve jetting, spraying,
atomization, coating, printing, or dispensing of liquids.
The underlying challenges and opportunities lie in the
intricate mathematics of nonlinear differential equations, simi-
larity solutions, perturbation analysis, singularities, and
topology.2,4,16,20,22 Even for trained fluid mechanicians, the
physicochemical hydrodynamics underlying spreading, coales-
cence, and pinching drops requires advanced methods to
describe and track interfaces and interfacial effects. The multi-
verse of length and time scales that must be tackled to obtain a
realistic description of the phenomena make most numerical
and computations efforts into arduous exercises that often
require validation from experiments. High-speed imaging as
well as visualization tricks (involving lighting, sparks, or
strobes) provide picturesque experimental data and insights
into their mathematics, hydrodynamics, and applications.

In this review, we restrict our attention to spreading, pinch-
ing, and coalescence phenomena where the influence of r, Z
and G can be captured using parameters of one liquid. Thus, we
systematically exclude studies that investigate the influence of
non-Newtonian viscosity, viscoelasticity, adsorption kinetics,
Marangoni flows, disjoining pressure, and in the case of emul-
sions, density or viscosity ratios of inner and outer fluids.
Likewise, we exclude from discussion any phenomena with
externally imposed velocity, including drop impact on sub-
strates, and pinching and coalescence of drops moving under
the influence of an external flow. The choices restrict us to the
three intrinsic parameters (r, G, Z) and one extrinsic lengths-
cale (D), or to the world of Ohnesorge units, such that each
experimental observation included in the study corresponds to
a fixed value of Oh, which will be color-coded in all figures, with
blue shades corresponding to Oh 4 1 and red shades corres-
ponding to Oh o 1 (the full color scale is given in the final
figure of the manuscript).

Experiments that visualize and analyze the change in con-
tact area of a drop undergoing spreading, a liquid neck experi-
encing pinching or break-up, or liquid bridge expanding due to
coalescence, often reveal that the size variation follows power
laws of the form: d B ta. Even though most experimental

analysis show that values of a equal to 2
3

(inertio-capillary), 1

(visco-capillary), and 1
2 (visco-inertial) are typically manifested if

the variable size d is much smaller than the drop size D,
significant disagreements remain about the precise value of
pre-factors. Dynamics such that d is comparable with D usually
reveal a greater diversity of scalings depending explicitly on D.
Often more than one power law is manifested in the same
experiment.2,12,23–25 In such cases, many questions arise about
the dominant or contributing stresses, the role or measurement
of material properties, and choosing the lengthscales and
timescales to observe universalities that help to elucidate
underlying physical mechanisms.

Motivated by these longstanding challenges, we took up the
arduous but rewarding task of collecting, replotting, reanalyz-
ing, and collating experimental data sets that explore spread-
ing, coalescence, and pinching. Here we provide an extensive
and unprecedented stock of data and analysis, with a detailed
investigation of pre-factors, transition lengths and times, and
power law exponents (see ESI,† with plots as well as the
numerical value of data sets and material properties included).
We proceed to show that by analyzing spreading, coalescing,
and pinching drops in Ohnesorge units, the experimental data
sets measured using a wide range of liquids collapse onto
universal scaling laws. The final figure here illustrates the
beauty of the science of scaling, or dimensional analysis, and
a homage to Ohnesorge. We acknowledge an immense debt to
many exquisite experiments we chose to employ here and to
extensive numerical and computation work that have helped
advance our understanding. We anticipate that this review will
facilitate a deeper understanding of the pragmatic, pedagogi-
cal, and physically intuitive description of the power laws
underlying spreading, pinching, and coalescence encountered
in our daily life, in nature and industry.

1 Visco-inertial scaling

The ratio between viscosity and density is the kinematic viscosity
n� Z/r. For instance, for water nC 10�6 m2 s�1. The dimensions of
this quantity are [n] = L2.T�1, and so the kinematic viscosity can also
be understood as the momentum diffusivity. If space is associated
with a single size d and time t, one can express the kinematic
viscosity as np d2.t�1, where we have used d and t to ‘measure’ the
dimensions L and T. This dimensional relationship can be recast as
a ‘simple spreading-like law’:26

d ¼ dvi
Z
r

� �1
2
t
1
2 (1)

where dvi is a dimensionless ‘constant of order 1’, which more
rigorously means that the variations of dvi with d, t, Z or r can be at
most logarithmic. The subscript ‘vi’ stands for ‘visco-inertial’. Note
that in fluid dynamics, the adjective ‘inertial’ is often used to
describe dynamics depending explicitly on the density, and we shall
use this convention too. The scaling law in eqn (1) describes the
spreading of a boundary layer, i.e. the size of the sheared part of a
fluid, at time t after it started being sheared. The exact value of the
pre-factor dvi will depend on the type of boundary conditions. For
instance, if the fluid is sheared by a flat plate dvi C 5.27

Because d and t are connected by a power law d B ta, the
speed of the leading edge of the boundary layer is v = qd/qt =
ad/t, here with a = 1

2. With this definition, the spreading law of
the boundary layer can also be expressed by a famous dimen-
sionless number:

d ¼ dviðZ=rÞ
1
2t

1
2 (2)

, d ¼ dviðZ=rÞ
1
2ðd=2vÞ

1
2 (3)
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, ðr=ZÞ
1
2d

1
2v

1
2 ¼ dvi=2

1
2 (4)

, rdv
Z
� Re ¼ dvi2

2
(5)

The visco-inertial scaling describes dynamics keeping the Rey-
nolds number constant. Note that the Reynolds number
defined here depends on d and v rather than on the extrinsic
length D and imposed velocity U as in Re*. Even though Re
depends on two variables, it combines them in such a way that
the product is constant. If the dynamics only depend on Z and r
the number dvi

2/2 is a constant ‘of order 1’. Note that in
practice, the values of these dimensionless constants can be
substantially different from 1. For instance, if dvi C 5, then
dvi

2/2 C 12.5. Nevertheless, we will most often forget these
factors when using the sign ‘p’ instead of ‘=’. For instance, we
will say that the boundary layer spreading is such that Re p 1.
Note that in the last line of the previous equations, we squared
the left-hand side because dimensionless numbers are defined
modulo an overall power. By convention, the power chosen is
usually such that the factors of the dimensionless number have
integer rather than fractional powers.

If a flow is confined one can only expect the scaling d B t1
2

to
be valid up to a distance D set by the confinement, as sketched
in Fig. 1a. This asymptotic size of the boundary layer would be
reached after a time tvi p rD2/Z. Actually, the quantities D, Z
and r can be combined to produce a full set of units {r, Z, D},
which may be used to derive expressions for a mass, length and
time, hereafter called the visco-inertial units:

mvi � rD3 (6)

cvi � D (7)

tvi �
rD2

Z
(8)

With these units one can express any quantity. For instance,
one can construct a stress Svi = mvi.cvi

�1.tvi
�2 = Z2/rD2 = Z/tvi.

In visco-inertial units, eqn (1) can be written as d=‘vi / ðt=tviÞ
1
2.

Obviously, this scaling can only be valid if d/D t 1. This dimension-
less geometric ratio will reappear throughout this review, where we
call it the ‘size ratio’ L� d/D. This dimensionless number describes
the ratio between the time-dependent size d and the fixed extrinsic
size D, which are sketched in Fig. 1 for all setups discussed in the
review. For L \ 1, d p Dt0.

For water, assuming D = 1 mm gives tvi C 1 s. For air,
assuming D = 1 m gives tvi C 1 day. Note that the actual
crossover time depends on the pre-factor dvi, since the equation

dviðZ=rÞ
1
2t

1
2 ¼ D leads to t = tvi/dvi

2. Moreover, the transition
from the diffusive regime to the asymptotic state typically
includes logarithmic corrections due to ‘finite size effects’,28

which soften the transition form d B t
1
2 to d B t0, a point we

shall discuss in more detail for the visco-capillary scaling.

2 Visco-capillary scaling

In the example of the boundary layer, the relevant material
parameters were the viscosity Z and density r. Here, we wish to
discuss dynamics where density has a negligible effect, but
where surface tension G plays a role. Whereas the ratio of
viscosity and density produces a diffusion coefficient, the ratio
of surface tension and viscosity produces a speed c � G/Z,
often called the visco-capillary speed. For instance, in water
c C 102 m s�1 (over 200 miles/hour!). The interplay of dimen-
sions between viscosity and surface tension can be expressed as
a simple spreading-like law:

d ¼ dvc
G
Z
t (9)

where the subscript ‘vc’ stands for ‘visco-capillary’. This regime
corresponds to a constant capillary number:

Ca � Zv
G
¼ dvc (10)

where v is the leading edge speed.

Fig. 1 Schematics of the experimental setups discussed in the review: (a) Confined boundary layer, (b) coalescence, (c) spreading, (d) pinching. The
magenta arrows highlight the extent of the extrinsic length D. For all schematics the arrow has length 2D, except for the boundary layer where the arrow
has length D. For spreading set-ups, the precise extrinsic length is D ¼ ð3O=4pÞ

1
3; where O is the volume of the drop. The black arrows show the direction

of extension of the length d. For pinching the arrows are reversed. The blue arrows schematize the main flow in each configuration.
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Whereas the spreading of a boundary layer described the
motion of the edge between sheared and unsheared portions of
the same fluid, the visco-capillary spreading describes the
motion of the front between an advancing fluid and its sur-
rounding medium.

Striking experimental illustrations of the simple visco-
capillary regime of eqn (9) are found in studies of drop
coalescence. In this context, the growing size d is that of the
neck between two drops, or between a drop and a pool of the

same fluid. Instances of the visco-capillary regime for fluids of
different viscosities and surface tensions are shown in Fig. 2a,
corresponding to visco-capillary speeds between a dozen
meters per second and a few microns per second.29–33 All fitted
values of the pre-factor dvc are given in ESI,† Section 2D. Usually
dvc is slightly lower than 1.

As in the boundary layer case, the visco-capillary regime of
eqn (9) is only expected to last if L t 1, where D is now the
radius of the drop before contact, as sketched in Fig. 1. When

Fig. 2 Visco-capillary spreading (filled symbols) and coalescence (open symbols). (a) Purely visco-capillary regime of coalescence following eqn (9) for
fluids of different viscosities and surface tensions, plotted in standard units. A few values of visco-capillary speeds are highlighted. All fitted values of dvc

are given in ESI†-Fig. S5. Note that only the portions of the data exhibiting the visco-capillary regime are shown here. This is particularly the case for the
data by Paulsen et al.,29 which will be shown in their entirety in Fig. 4–6. Data reproduced from Aarts et al.30,31 (&), Paulsen et al. (J),29 Rahman et al. (})32

and Yao et al. (.).33 (b) Approaches to the asymptotic regime for a few examples of coalescence from panel-a (open symbols) and for an example of
spreading from Eddi et al. (’).34 The labels give the values of the drop size D for each experiment. The parallel dashed lines follow d B t. (c) Tanner
regime for the late spreading of viscous drops of different sizes D, reproduced from Cazabat et al. (~).35 The values of dTan are given in ESI†-Fig. S6a.
Eventual departure from Tanner’s regime is due to gravity.35 (d) Data from panels a to c are replotted together with visco-capillary units based on the
system {G, Z, D}. The units are t�vc � g1tvc , with tvc � ZD/G, and ‘�vc � g2‘vc , with cvc � D. The values of g1 and g2 for all curves are obtained from the pre-

factors dvc and dTan (see ESI,† Section 2E for details). With these units the two spreading laws become d=‘�vc ¼ t=t�vc (black dashed line) and d=‘�vc ¼ ðt=t�vcÞ
1
10

(gray dashed line). Also included are coalescence data in between two plates36 ( ), in which case the late spreading follows d=‘�vc ¼ ðt=t�vcÞ
1
4 (gray spaced dashed

line). In this case, the extrinsic size D is the geometric mean between the in-plane drop size and the spacing between the two plates. The dotted dashed line
includes the logarithmic correction d=‘�vc ¼ ðt=t�vcÞð�0:25 logðd=‘�vcÞÞ.

34 The data set corresponding to a spreading in partial wetting conditions, is labeled by

‘DGo 0’,34 for which the asymptotic regime is d p D. Note that by definition d=‘�vc ¼ L=g2. Details of the fluid properties for all data sets in the panels of this figure

are given in ESI,† Section 1. The schematics on the panels illustrate the different experimental set-ups, which are discussed in more detail in ESI,† Section 6. The

color used for each data set gives to the value of the Ohnesorge number Oh ¼ Z=ðDGrÞ
1
2. The full color scale is given in Fig. 6.
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L \ 1, the size and shape (curvature) of the drop starts to have
a significant influence on the coalescence or spreading. In
Fig. 2b we show later data points belonging to some experi-
ments from Fig. 2a, showing how the spreading slows down as
d approaches D. Also shown is a curve for the spreading of a
viscous drop on a flat substrate (filled symbols).34 In that case,
d is the contact radius.

In the confined boundary layer case, the asymptotic regime
was d p D. Here, the situation is more complex since the radius
d can actually grow beyond the initial drop radius D. This is
most clearly illustrated for spreading droplets. Whereas the
initial spreading depends only on the value of the surface
tension G related to the interface between the drop and the
surrounding fluid, the final spreading can depend on the
surface energies between the drop and the substrate (G0), and
between the substrate and the surrounding fluid (G00). One usually
defines a ‘spreading parameter’ DG = G00 � G � G0.8,18 For partial
wetting, i.e. if DG o 0, the spreading usually stops for L p 1 (as
labeled in Fig. 2d). The contact line can even recede in some cases.34

For total wetting, i.e. if DG 4 0, the surface tension G between the
drop and the surrounding medium dominates. In this case, the
long-time behavior of the spreading often follows what is usually
referred to as ‘Tanner’s law’:8,37

d ¼ dTan
G
Z

� � 1
10
D

9
10t

1
10 (11)

This trend keeps the following dimensionless product constant:
CaL9 = dTan

10/10.
In Fig. 2c Tanner’s trend is shown for drops of the same

fluid for various values of D.35 Note that this scaling cannot be
obtained by simple dimensional analysis, since it depends on
three rather than two parameters. The value of the exponent
actually depends on a crossover between the bulk of the drop
and a very thin precursor film.8,11,18 Note that gravity can also
alter the late spreading,35 as is apparent in Fig. 2c, and as we
shall discuss in the last section.

To systematically describe the spreading and coalescence
of viscous fluids, one can introduce visco-capillary units
{G, Z, D}:

mvc �
Z2D2

G
(12)

cvc � D (13)

tvc �
ZD
G

(14)

Note that the stress in this system is Laplace’s pressure,
Svc = mvc.cvc

�1.tvc
�2 = G/D. In this system of units, the mass

is not that of the volume D3, instead it can be understood from
Newton’s law as mvc = Fvc/avc, where the visco-capillary force
and acceleration are respectively Fvc = GD and avc = cvc.tvc

�2 =
c2/D. The effective visco-capillary mass can also be understood
from Evc = mvcc2, where c = G/Z and where Evc = GD2 is the
capillary energy.

In visco-capillary units the timescale gives the crossover
between the early and late spreading. For instance, if the

viscosity and surface tensions are Z C 60 mPa s and G C
60 mN m�1, and D C 0.5 mm, one has�ms. As in the boundary
layer example, the actual crossover radius and time must
include dimensionless constants. Matching eqn (9) and (11)

would yield t�vc � g1tvc and ‘�vc � g2‘vc; with g1 � ðdTan=dvcÞ
10
9

and g2 � ðd10Tan=dvcÞ
1
9. For instance, if dvc C 0.5 and dTan C 0.8,

then t�vc ’ 1:7tvc. All values of g1 and g2 are given in ESI,†
Section 2E, together with a detailed procedure on how they are
derived for all plots of this article.

In Fig. 2d, data sets from Fig. 2a–c are replotted using visco-
capillary units. Additional data sets of viscous coalescence or
spreading are also included. In visco-capillary units, eqn (9) and
(11) are written as d=‘�vc ¼ ðt=t�vcÞa, respectively with a = 1

and a ¼ 1
10

. More broadly, any spreading law of the form

d=‘�vc ¼ ðt=t�vcÞa is dimensionally sound and so a priori possible.
In particular, the geometry of the late spreading can signifi-
cantly alter the value of the exponent a. For instance, we
included in Fig. 2d data on the coalescence between two
parallel plates, in which case a ¼ 1

4
.36

In between the early and late regimes, some data show an
intermediate trend similar to what we discussed for the
boundary layer when finite size effects come into play. The
equations of motion themselves suggest that the pre-factor
dvc in eqn (9) actually includes a logarithmic correction, i.e.
dvc p log(d/D).34,38,39 This correction is shown by the dotted-
dashed line in Fig. 2d. This trend agrees quite well with some
spreading drops. We will see later that the transition from early
to late spreading/coalescence can also be altered by inertia.

3 Inertio-capillary scaling

In the example of the boundary layer, the relevant material
parameters were the viscosity Z and density r. For visco-
capillary spreading and coalescence, the parameters were Z
and G. Now we wish to discuss capillary dynamics where inertia
assumes prominence over viscous effects, considering r instead
of Z. The ratio between a surface tension and a density
produces a kinematic quantity k � G/r, with dimensions
[k] = L3.T�1. Such ratio is not as well known as a diffusion
coefficient like n, or a speed like c, but it is no less fundamental.
This interplay of dimensions between density and surface
tension can be expressed as a simple spreading-like law:55

d ¼ dic
G
r

� �1
3
t
2
3 (15)

The subscript now stand for ‘inertio-capillary’. This regime
corresponds to a constant Weber number:

We � rdv2

G
¼ ð2=3Þ2dic3 (16)

The reader is referred to the ESI,† Section 3 for details on this
derivation.

The most vivid examples of the inertio-capillary regime described
by eqn (15) are actually found in the pinching dynamics of drops,
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bubbles and soap films.42,56 If t̃c is the standard time ‘running
forward’, and t̃c is the instant of pinch-off, then one can define a
time t = t̃c� t̃, ‘running backward’ from the pinch-off instant. In this
frame of reference, the pinch-off instant becomes analogous to the
first contact in regular spreading or coalescence.

In Fig. 3a, a set of inertio-capillary pinching dynamics is shown
to exhibit the 2

3
scaling of eqn (15).40–44 All pre-factors dic are of order

1. Note again that the actual value of the pre-factor dic can include
logarithmic dependencies57,58 (see ESI,† Section 2D for details). For
pinching dynamics, the nozzle size or the initial bridge radius
provide an extrinsic length D, as sketched in Fig. 1d. In exactly

the same way we followed for the boundary layer and for the visco-
capillary spreading, we can build a system of units based on this
additional length {G,r,D}:

mic = rD3 (17)

cic = D (18)

tic �
rD3

G

� �1
2

(19)

In this system, the characteristic stress is still the Laplace
pressure, Sic ¼ mic:‘ic

�1:tic�2 ¼ G=D. The data from Fig. 3a are

Fig. 3 Inertio-capillary pinching (crosses and stars), coalescence (open symbols) and spreading (filled symbols). (a) Purely inertio-capillary regime of
pinching following eqn (15) for fluids of different densities and surface tensions, plotted in standard units. A few values of dicðG=rÞ

1
3 are highlighted. All

fitted values of dic are given in ESI,† Section 2E. Data reproduced from Bolanos et al. (+),40 Burton et al. (*),41 Chen et al. ( ),42 Chen et al. (�)43 and

Goldstein et al. ( ).44 (b) Data from panel-a reproduced in inertio-capillary units. Additional data sets are included, in particular for the pinching of

mercury from Burton et al. (*).45 (c) Illustrations of the Rayleigh regime of eqn (20) for spreading from Biance et al. (�),46 Eddi et al. (’),34 Chen et al. ( ),47

for coalescence from Menchaca-Rocha et al. (r),48 Thoroddsen et al. ( ),49,50 Paulsen et al. (J),29,51 Soto et al. (D),52 and for pinching of bubbles from

Burton et al. (*),53 Bolanos et al. (+)40 and Keim et al. (�).54 The parallel dashed lines follow d � t
1
2. (d) All data from panels a to c are replotted together with

inertio-capillary units. The units are t�ic � g1tic, with tic � ðrD3=GÞ
1
2, and ‘�ic � g2‘ic, with cic = D. The values of g1 and g2 for all curves are obtained from the

pre-factors dic and dRay (see ESI,† Section 2E for details). In these units the dotted and dotted-dashed lines correspond to d=‘�ic ¼ ðt=t�icÞa, respectively with

a ¼ 2
3

and 1
2. Note that by definition d=‘�ic ¼ L=g2. Details of the fluid properties for all data sets in the panels of this figure are given in ESI,† Section 1. The

schematics on the panels illustrate the different experimental set-ups, which are discussed in more detail in ESI,† Section 6. The color used for each data

set gives to the value of the Ohnesorge number Oh ¼ Z=ðDGrÞ
1
2. The full color scale is given in Fig. 6.
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replotted in these inertio-capillary units in Fig. 3b. Most of the

data collapse on the trend d=‘ic / ðt=ticÞ
2
3; except when L p 1,

where the extrinsic length starts to have an influence. As shown
in Fig. 3a and b, multiple behaviors have been observed
depending on the type of system. For instance, the data set at
the bottom of Fig. 3a corresponds to the pinching of a drop of
superfluid Helium.53 In this case, as the size of the neck gets
closer to the extrinsic length D, the geometry of the drop can
alter the value of the pre-factor dic in the 2

3 scaling of eqn (15).
This transition from the self-similar regime to a so-called ‘roll-
off regime’ was first described in the context of soap films by
Chen and Steen.42 Some of their data are reproduced in Fig. 3a
and b. Also shown are data from the collapse of a soap film on a
Möbius strip.44 At first, for L{ 1, the geometry of the soap film
has no influence and the data overlap with the regular soap
bridge. Only in the end do the data diverge.

The 2
3

scaling of eqn (15) has been observed in a vast array of
systems, but some pinching dynamics deviate from it. For
instance, a bubble surrounded by water will be pinching
according to a power law with an exponent close to 1

2, as can
be seen in Fig. 3c (star symbols). Theory predicts an exponent
slightly varying with time, around a value close to 0.56.59 In
practice, experiments may have difficulties differentiating such
non-trivial exponent from 1

2 if logarithmic corrections are
allowed (see ESI,† Section 3A for details). For inertio-capillary
dynamics with exponents close to 1

2, an important historical
guide and good approximation has been ‘Rayleigh’s law’:5

d ¼ dRay
GD
r

� �1
4
t
1
2 (20)

This trend keeps the following dimensionless product con-
stant: WeLdRay

4/4.
This non-trivial scaling is not universal in the sense that it

depends on D, but it is most definitely widespread, having been
observed for pinching (crosses and stars), coalescence (open
symbols) and spreading (filled symbols), as shown in Fig. 3c. In
these different contexts, the pre-factor of the 1

2 scaling depends
on density, surface tension and size, in a compounded way. For
instance, in Fig. 3c the data with D = 0.9 mm lie below the data
with D = 0.7 mm, because of differences in surface tension and
density. Note that wettability of the substrate can also influence
this regime.34,60 All pre-factors dRay are of order 1 (see ESI,†
Section 2D for details).

In inertio-capillary units the 1
2 regime is written as

d=‘ic / ðt=ticÞ
1
2. When plotted in dimensionless form in

Fig. 3d, the data from Fig. 3c partially collapse for their portions
abiding to eqn (20). For L \ 1, the spreading data transition to
Tanner’s regime for total wetting conditions. The behavior at
long time is similar to that of more viscous droplets described
in Fig. 2.46,61 The pinching dynamics following the 2

3
regime are

also plotted in Fig. 3d. The purely inertio-capillary regime and
the size-dependent inertio-capillary regime of Rayleigh’s law
run concurrently rather than consecutively, in contrast to the

purely visco-capillary regime and the size-dependent visco-
capillary regime of Tanner’s law.

4 The Ohnesorge number

So far, we have described capillary dynamics by distinguishing
fluids dominated by inertia or by viscosity. In practice, fluids
can display both inertia and viscosity, in conjunction with
surface tension. In general, the interplay between Z, G, r and
an extrinsic size D can be described by the Ohnesorge number:4

Oh � Z

ðrGDÞ
1
2

(21)

For each experiment a value of Ohnesorge number can be
computed. The colors used for all data sets shown in this
contribution actually give the values of the Ohnesorge number,
with Oh 4 1 corresponding to blue shades and Oh o 1
corresponding to red shades. The full color scale is given in
Fig. 6.

The Ohnesorge number can be understood as a Reynolds
number or a Weber number for which the characteristic length
is D, and the characteristic speed is the visco-capillary speed
G/Z. Alternatively, the Ohnesorge number can be understood as
a capillary number for which the characteristic speed is the

inertio-capillary speed ‘ic=tic ¼ ðG=rDÞ
1
2 (also called ‘Taylor-

Culick speed’).
So far, we have used four kinds of dimensionless numbers:

the Reynolds, Capillary and Weber numbers, built from the
variables d and t, and the size ratio L, which gives the ratio
between the variable d and the constant D. These numbers can
be used as factors of the Ohnesorge number:1,4

Oh2 ¼ Ca

Re
L ¼ We

Re2
L ¼ Ca2

We
L (22)

where we have used the following identity:

We = Ca Re (23)

This identity comes with a convenient mnemonic device, since
it can be read as ‘we care’, complementing the German ‘ohne
sorge’, which can be translated as ‘without worries’. The ESI,†
Section 3 provides a more in-depth discussion of the connec-
tions between the different dimensionless quantities used in
this article.

Another way to understand the Ohnesorge number is as a
translation factor between the three timescales we have intro-
duced so far: tvc = Ohtic = Oh2tvi. Roughly, Oh 4 1 corresponds
to more viscous dynamics and Oh o 1 corresponds to more
inertial dynamics. The Ohnesorge number actually states that
higher surface tension, higher density or extrinsic size D have
the same effect as smaller viscosity.

The translations formulas between timescales can be used
to express visco-capillary spreadings in inertio-capillary units or
inertio-capillary spreadings in visco-capillary units. For
instance, Rayleigh’s regime of eqn (20) can be written in

visco-capillary units as d=D / Oh
1
2ðt=tvcÞ

1
2. This new expression
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for Rayleigh’s regime can be understood by plotting the data
from Fig. 3c in the visco-capillary units of Fig. 2d. This
combination is done in Fig. 4a. The 1

2 trend shown in the figure
corresponds to Oh = 10�3. As the value of the Ohnesorge
number increases, i.e. as the shade of red gets paler, the curves
moves toward the origin where d ¼ ‘�vc and t ¼ t�vc. The origin is
reached for Oh = 1. An animated detailed version of this figure
is provided in ESI.† In addition, the figure is drawn in more
detail in ESI†-Fig. S2a for all data sets such that Oh o 1. A
similar combination can be done for the purely inertio-capillary
2
3

regime, as shown in ESI†-Fig. S2b. Formulas for the points

where the 1
2 or 2

3
regimes intersect with the visco-capillary

regimes are given in ESI†-Fig. S1a. All intersections can be
expressed as powers of Oh.

A similar translation scheme can be followed to express
viscous dynamics (Oh 4 1) in inertio-capillary units, as dis-
played in Fig. 4b. For instance, the purely visco-capillary regime
of eqn (9) can be written as d/D p Oh�1t/tic. These trends are
shown for a few values of Oh in Fig. 4b. Here again, all
intersections between trends can be expressed as powers of
Oh, as shown in ESI†-Fig. S1b. All data sets following the purely
inertio-capillary scaling of eqn (15) were excluded from this
figure for clarity, as they overlap with the rest of the data. A plot
restricted to these data sets is given in ESI†-Fig. S3a.

In Fig. 4a or b, it is quite clear that Rayleigh’s 1
2 scaling only

has a non-vanishing extent if Oh o 1, because of the existence
of the visco-capillary regime at earlier times. However, if such
linear early regime is not present, one may notice that in the
limit Oh = 1, Rayleigh’s regime becomes identical to the

boundary layer scaling. This is seen clearly by expressing

eqn (20) in visco-inertial units as d=D / Oh�
1
2ðt=tviÞ

1
2, where

d=D / ðt=tviÞ
1
2 is just eqn (1), i.e. d / ðntÞ

1
2. To illustrate this

point, we can replot the data from Fig. 4 in visco-inertial units,
where we know that the boundary layer dynamics are most
naturally expressed. Fig. 5 shows such combination. Again, the
purely inertio-capillary dynamics have been excluded for clarity,
they are shown in ESI†-Fig. S4c. If the boundary layer scaling is
understood as corresponding to Oh = 1, this implies that the
associated effective surface tension of a boundary layer can be
defined as Gvi = Z2/rD = mvi.tvi

�2. For instance, for water, this
would give Gvi C 10�6 N m�1 if D = 1 mm. This value is a few
orders of magnitude lower than a typical surface tension
between a liquid and air, but it is close to liquid–liquid
interfacial tension.62

5 The Ohnesorge units

So far, we have mentioned three systems of units: the visco-
inertial units {Z,r,D}, the visco-capillary units {G,Z,D} and the
inertio-capillary units {G,r,D}. Using examples from boundary
layers, spreading drops, coalescence and pinching we have
illustrated the use of these units in association with three
simple spreading laws, where ‘spreading’ is understood in a

broad sense: d / ðZ=rÞ
1
2t

1
2, d p (G/Z)t, and d / ðG=rÞ

1
3t

2
3. These

scaling laws are ‘simple’ in the sense that they can be obtained
directly from dimensional analysis. These laws are also called
‘universal’ because they do not depend on any external

Fig. 4 Spreading (filled symbols), coalescence (open symbols) and bubble pinching (crosses and stars) experiments for fluids with different degrees of
inertia, viscosity and surface tension. All data from Fig. 2 and 3 are shown, except for dynamics following the 2

3
scaling, which are shown in ESI†-Fig. S2 and

S3. The color used for each data set gives to the value of the Ohnesorge number, with Oh 4 1 corresponding to blue shades and Oh o 1 corresponding
to red shades. The full color scale is given in Fig. 6. (a) In visco-capillary units Rayleigh’s regime of eqn (20) corresponds to an intermediate regime

between early and late spreading, following d=‘�vc ¼ Oh
1
2ðt=t�vcÞ

1
2. The red dotted-dashed line corresponds to Oh = 10�3. As the value of Oh gets closer to 1,

the extent of the intermediate regime shrinks. (b) In inertio-capillary units the different values of viscosity associated with each experiment are revealed by

different points of departure with the 1
2 regime. In the early dynamics, the purely visco-capillary regime of eqn (9) corresponds to parallel dashed lines following

d=‘�ic ¼ Oh�1ðt=t�icÞ. Different values of Ohnesorge number are also manifested in the late dynamics of spreading abiding to Tanner’s law, which can be

expressed as d=‘�ic ¼ Oh�
1
10ðt=t�icÞ

1
10. Details of the fluid properties for all data sets in the panels of this figure are given in ESI,† Section 1. Schematic versions of

these plots are available in ESI†-Fig. S1a and b. Animated versions of these figures are provided in ESI.†
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parameter like the size of the drop D. One can verify that the visco-
inertial regime corresponds to the only choice of exponent a, such
that d/cvi p (t/tvi)

a does not depend on D. Similarly, the visco-
capillary regime and the inertio-capillary regime correspond to the
only exponents canceling the influence of D in visco-capillary and
inertio-capillary units respectively.

The three simple scalings intersect at the same spatio-
temporal location:

Z
r

� �1
2
t
1
2 ¼ G

Z
t ¼ G

r

� �1
3
t
2
3 ! t ¼ to and d ¼ ‘o (24)

The coordinates of the intersection between these three
regimes are the time and lengthscale of a fourth system of
units {G,Z,r}, which we call the Ohnesorge units:

mo �
Z6

G3r2
(25)

‘o �
Z2

Gr
(26)

to �
Z3

G2r
(27)

The Ohnesorge units have been invoked directly or indirectly in
a number of studies, and date back to Haenlein, Weber and
Ohnesorge, as stated in the introduction.1,6,7

The magnitude of these units can vary widely depending on
the properties of the fluid, as shown on a few examples in the
inset of Fig. 6. A complete table with the values computed for all
experiments used in this article is given in ESI.† The Ohnesorge
length and time vary from co C 3 Å and to C 3 ps for mercury,45

and co C 1 km and to C 4 months for a viscous silicon oil.33

In Ohnesorge units, the scalings of the form d/co p (t/to)a

admit three special values: for a = 1
2 the dynamics are indepen-

dent of G (eqn (1)), for a = 1 the dynamics are independent of r
(eqn (9)), and for a ¼ 2

3
the dynamics are independent of Z

(eqn (15)).
In contrast to the three systems introduced so far, the

Ohnesorge units are purely intrinsic and do not depend on
any extrinsic length D. Being at the crossroad of viscosity,
inertia and surface tension, these units can be understood in
a few different ways. For instance, the Ohnesorge time to can be
connected to the three other timescales by the Ohnesorge
number as:

tvi ��!�Oh
tic ��!�Oh

tvc ��!�Oh2

to (28)

Thus, the two possible orderings for the four timescales are
either tvi o tic o tvc o to if Oh 41, or tvi 4 tic 4 tvc 4 to if
Oh o 1. The Ohnesorge time can be understood as a visco-
inertial time, or a visco-capillary time, or an inertio-capillary
time when the distance D is replaced by co.

The Ohnesorge length co can be expressed as co = Oh2D.
Conversely, one can use the Ohnesorge length to define the
Ohnesorge number as a ratio between intrinsic and extrinsic

lengthscales, Oh ¼ ð‘o=DÞ
1
2. Alternatively, one can use the

Laplace or Suratman number:4

La � D

‘o
¼ 1

Oh2
(29)

Large values of the Laplace number correspond to more inertial
dynamics, whereas small values correspond to more viscous
ones. Note that the Ohnesorge number can also be expressed
from the masses of the different systems of units, as mo =
mvcOh4 = micOh6, where mic = mvi = rD3 is the actual mass
(neglecting numerical factors).

In the Ohnesorge units, the characteristic stress is
So ¼ mo:‘o

�1:to�2 ¼ G2r=Z2. Again, this formula can be
understood in a few ways. From an inertial perspective, one
can write the stress as a dynamic pressure So ¼ ruo2, where
uo = co/to p G/Z is the visco-capillary speed. From a viscous
perspective, one can write the stress in a Newtonian way as
So ¼ Zðuo=‘oÞ. From a capillary perspective, one can write the
stress as a Laplace pressure, So ¼ G=‘o. All these perspectives
lead back to the same formula.

The Ohnesorge units are ideal to represent spreading,
coalescence and pinching dynamics from a purely intrinsic
perspective. All data reproduced in this article are shown in
Ohnesorge units in Fig. 6. These intrinsic units allow to
circumvent the challenges faced with the overlap of data sets
in Fig. 4 and 5, where the purely inertio-capillary data had to be
plotted separately. Here, all data can be shown simultaneously,

Fig. 5 Spreading (filled symbols), coalescence (open symbols) and bubble
pinching (crosses and stars) experiments for fluids with different degrees of
inertia, viscosity and surface tension, represented in visco-inertial units.
The dotted-dashed line gives the boundary layer scaling of eqn (1). The
color used for each data set gives to the value of the Ohnesorge number
(full color scale in Fig. 6). The dashed lines give three examples of the
purely visco-capillary scaling of eqn (9) and Tanner’s regime of eqn (11), for
Oh = 10�3, 1 and 103. The red dotted-dashed line gives Rayleigh’s regime
of eqn (20) for Oh = 10�3. The black loosely dotted line follows d=‘�vi ¼

ðt=t�viÞ
1
3; which gives the loci of the intersections between the purely visco-

capillary regime and Rayleigh’s regime. The black dotted dashed line is the

boundary layer scaling d=‘�vi ¼ ðt=t�viÞ
1
2. Details of the fluid properties for all

data sets in the panels of this figure are given in ESI,† Section 1. A
schematic version of this plot is available in ESI†-Fig. S1c. An animated
version of this figures is provided in ESI.†
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including 71 separate curves d(t) obtained from 25 different
studies,29–36,40–54,63,64 spanning 7 orders of magnitude in the
value of Oh, and respectively 14 and 18 orders of magnitude in
the values of d/co and t/to. In this representation, the different
values of extrinsic length D emerge as different points of
departure from comparatively more universal trends.

For Oh 4 1, i.e. La o 1, the data seem to converge on the
linear scaling when d/co { La, i.e. when L { 1. If L \ 1,
different departures are possible depending on the boundary
conditions. For instance, for total wetting, spreading data can

follow Tanner’s law d=‘o / Oh�
9
5ðt=toÞ

1
10.

For Oh o 1, i.e. La 4 1, the asymptotic departures similarly
correspond to different values of the extrinsic size D. Whereas
the linear scaling seems quite attractive to all dynamics for
d/co { La o 1, multiple trends are possible for d/co { La 4 1.
For instance, spreading, coalescence and bubble pinching can
remain on the linear scaling as long as d/co o Oh�1, then
follow the size-dependent inertio-capillary regime, now written

as d=‘o / Oh�
1
2ðt=toÞ

1
2. This intermediate regime reaches d p D

when crossing the 2
3

trend. Not all data follow this path through
the size-dependent inertio-capillary regime. In particular, we
have seen that the pinching dynamics of liquids can transition
from a purely visco-capillary regime to a purely inertio-capillary
2
3

regime, as soon as d 4 co. A zoom on the quadrant d 4 co and
t 4 to of Fig. 6 is provided in ESI†-Fig. S11, to allow for easier
distinction between the different possible paths.

What are the conditions dynamics must meet to exhibit an
intermediate size-dependent inertio-capillary 1

2 regime instead

of directly following the purely inertio-capillary 2
3

regime? For

instance, bubbles of air in water will exhibit the 1
2 regime,

whereas water drops will exhibit the 2
3

regime.16 For spreading
drops, results from Biance et al. and Chen et al. corresponding
to Oh C 10�1�10�3 exhibit the 1

2 scaling.46,47 However, we
notice that data from Eddi et al.34 for Oh C 10�1�1 can be seen
to follow the 2

3
regime (see ESI†-Fig. S11 for details). The

Fig. 6 Spreading (filled symbols), coalescence (open symbols) and pinching (crosses and stars) experiments for fluids with different degrees of inertia,
viscosity and surface tension, represented in Ohnesorge units. The color used for each data set gives to the value of the Ohnesorge or Laplace numbers.
The few data sets with Oh o 10�3 are saturated and displayed with the color corresponding to Oh = 10�3. The inset table gives orders of magnitudes for
co and to for a set of commonly used fluids (assuming normal temperature and pressure). Note that the dimensionless size and time include the
dimensionless pre-factors, such that t�o � g1to and ‘�o � g2‘o. The values of g1 and g2 for all curves are obtained from the pre-factors dvc, dTan, dic and dRay

(see ESI,† Section 2E for details). Details of the fluid properties for all data sets in the panels of this figure are given in ESI,† Section 1. Schematic and
animated versions of this plot are also available in ESI.†
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conditions bringing dynamics along the 1
2 or 2

3
regimes remain

unclear, but may be related to the initial shape of the drop.60,65

Moreover, some dynamics even seem to follow the 1
2 or 2

3
scaling

for d o co. These data are not shown in Fig. 6, but are given in
ESI†-Fig. S12. The coexistence of different parallel regimes was
manifested in Fig. 3 for Oh o 1, and dimensional analysis
alone does not preclude the existence of multiples regimes for
Oh 4 1. For instance, if the boundary layer dynamics are
interpreted as having Oh = 1, then co = D, and the data follow
the 1

2 scaling drawn with the dotted-dashed line in Fig. 6. More
surprising, the data on spreading drops from Eddi et al.,34 with
Oh \ 1 are quite close from the 2

3
scaling drawn as a dotted line

in Fig. 6, depending on the pre-factors g1 and g2 that one may
choose (see ESI†-Fig. S12 for details). Note also that in the
context of the coalescence of drops with Oh p 1, a regime
combining inertial, viscosity and surface tension has been
evidenced.66

In reviewing the literature on spreading, pinching, and
coalescence, we thought that spreading and coalescence would
show a stronger dependency on geometry and display the size-
dependent 1

2 regime for Oh o 1, whereas pinching would follow

the more universal 2
3

regime. Experiments seem to paint a more
nuanced picture.

6 Departures from Ohnesorge’s units

All data discussed in this article abide quite well to the
Ohnesorge units. Despite the fact that the data cover an
unprecedentedly large spectrum, they only represent a small
fraction of the possible dynamics influenced by viscosity,
density and surface tension. For future studies to include more
data, we see two complementary avenues set by answering the
following questions: what kind of additional data would fit
within the Ohnesorge units, and what kind would not?

First, one may wonder about dynamics abiding to Ohne-
sorge units but in non-trivial ways. For instance, in the context
of the spreading of liquid-on-liquid, one may encounter scal-
ings of the form d=‘o / ðt=toÞa, with a different from 1, 1

2 or 2
3
. In

particular, a ¼ 3
4

has been described in several instances.67,68

Such non-trivial regime in Ohnesorge units is analogous to
Tanner’s law or to Rayleigh’s law, in the sense that it cannot be
derived directly from dimensional analysis.

For the data represented in Fig. 6, departures from the three
simple scalings (1, 1

2 and 2
3) are all associated with the existence

of an extrinsic or ‘integral’ lengthscale D. In all experiments
considered here, the spreading, coalescence or pinching
dynamics are ‘free’, in the sense that they happen sponta-
neously, without any imposed speed U or acceleration G. If
non-negligible extrinsic speed or acceleration are present, the
‘integral scale’ is not solely characterized by a size D. Hence, in
these ‘forced’ cases of spreading, coalescence or pinching, one
would expect the departures from Ohnesorge’s units to be more
varied. Already in Fig. 2c we noticed that gravity, i.e. an
acceleration G = g can alter Tanner’s law at long time, leading

to d � t
1
8 instead of d � t

1
10.35 Similarly, an extrinsic speed can

have a very significant impact, as was indeed demonstrated for
jetting by Ohnesorge himself.1

Departures from the Ohnesorge units can also be due to
additional intrinsic mechanisms beyond viscosity, inertia and
capillarity. For instance, in the case of viscoelastic fluids an
elasticity S becomes relevant and generate an intrinsic ‘relaxa-
tion time’ tve = Z/S, which can lead to exponential regimes, so
far mostly described in the context of pinching.12,24,25

In general if the departure from Ohnesorge units can be
traced back to a quantity Q, then a dimensionless number
N = Q/Qo can be built, where Qo has the same dimensions than
Q and is given in Ohnesorge units. For instance, if Q = D, then
N = D/co = La = Oh�2. If Q = G, then N = G/Go = GZ4/G3r = BoOh4,
where Bo = rGD2/G is the Bond number.18 If Q = S, then
N ¼ S=So ¼ SZ2=G2r ¼ Ec�1 Oh2; where Ec = G/SD is the
elasto-capillary number.12

Another way in which dynamics can differ from those
depicted in Fig. 6 is in the presence of competing choices of
densities, viscosities or surface tensions. In this article, we
focused on cases where a single choice of material parameters
was possible, but it is not necessarily the case. In general, ratios
of the material properties of the inner and outer fluids can have
an impact on the dynamics. This issue has been investigated
for spreading,69,70 coalescence51,70 and pinching71 and we hope
to be able to include these studies in the future. Some of these
dynamics may fit well with the Ohnesorge units with minimal
adjustments. For instance, the coalescence of bubbles in a

viscous fluid can give rise to a scaling d=‘vc / ðt=tvcÞ
1
2;

when the outer viscosity is used to compute the visco-
capillary time tvc.51

7 Conclusion

Because lengths, durations and masses are so engraved in our
understanding of physical reality, we tend to forget that their
fundamental stature is somewhat of a convention. Interna-
tional standards encourage the use of units based on the
dimensions of mass, length and time, reminding for example
that a viscosity of 1 poise stands for 0.1 kg m�1 s�1. This
approach to physical quantities like viscosity, density or surface
tension is rooted in metrology. For instance, if one needs to
measure viscosity, one will have to rely on some associated
measurements of size (e.g. dimensions of the rheometer), time
(e.g. in measuring speeds) and mass (e.g. if stress is measured
through a torque, itself measured by a mass and pulley system).
In everyday life, distances, durations and to some extent masses
are the most easily available measures of the physical world.
However, the microcosm unfolding at the scale of drops of
fluid, spreading, pinching and coalescing, is quite different
from ours. There, space, time and mass are derived quantities,
produced by the interplay of three basic dimensions called
viscosity, surface tension and density. By elevating these three
quantities as fundamental dimensions, recent studies have
greatly advanced our understanding of capillary phenomena.
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Building on years of experimental studies on spreading, pinch-
ing and coalescence, they have shown how the different classes
of behaviors are quantitatively related by the use of appropriate
units based on Z, G and r.

The three simple spreading laws discussed in this article
(eqn (1), (9) and (15)) provide the three essential ways in which
space-time emerges in the universe of droplets, the three ways
in which length and duration are coupled. One way to interpret
the Ohnesorge units is as giving the dimensions of length, time
and mass as derived from those of viscosity, surface tension
and density. For instance, ½t	 ¼ ½Z	3:½G	�2:½r	�1. This equation on
the dimensions is always true, even beyond drops of fluids.
What is most striking is that if the equation is used without the
brackets, i.e. to yield numerical values, then the derived time-
scale turns out to be very significant to the dynamics in the
world of drops. As shown in Fig. 6, the Ohnesorge time to is at
the crossroads of an array of different phenomena and often
marks the turning point between distinct dynamical regimes.

The Ohnesorge units formalize the essential intrinsic prop-
erties of a world governed by viscosity, surface tension and
density. However, this universe is not unbounded, and its limit
overlaps with our more familiar realm through the influence of
the ‘integral’ or ‘extrinsic’ length D. In this article, we have
carefully shown how the intrinsic Ohnesorge units can be
transformed by the addition of the length D, and how size-
dependent dynamical regimes like those of Tanner or Rayleigh
can become preponderant. Together, the four systems of units
described in this article provide the four ways to choose three
parameters from the set {G,Z,r,D}. These four parameters are
connected to each other by the Ohnesorge number, which
provides a natural way to distinguish between ‘more viscous’
(Oh 4 1) and ‘more inertial’ (Oh o 1) dynamics.
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